\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy category of an (infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_simplicially_enriched_categories}{In terms of simplicially enriched categories}\dotfill \pageref*{in_terms_of_simplicially_enriched_categories} \linebreak \noindent\hyperlink{in_terms_of_complete_segal_spaces_and_segal_categories}{In terms of complete Segal spaces and Segal categories}\dotfill \pageref*{in_terms_of_complete_segal_spaces_and_segal_categories} \linebreak \noindent\hyperlink{in_terms_of_quasicategories}{In terms of quasi-categories}\dotfill \pageref*{in_terms_of_quasicategories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{BrownRepresentability}{Brown representability}\dotfill \pageref*{BrownRepresentability} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[homotopy category]] of an [[(∞,1)-category]] $\mathcal{C}$ is its [[decategorification]] to an ordinary [[category]] obtained by identifying 1-[[morphisms]] that are connected by a [[2-morphism]]. If the [[(∞,1)-category]] $\mathcal{C}$ is presented by a [[category with weak equivalences]] $C$ (for instance as the [[simplicial localization]] $\mathcal{C} = L C$) then the notion of [[homotopy category]] of $C$ (where the weak equivalences are universally turned into [[isomorphism]]s) coinicides with that of $\mathcal{C}$: \begin{displaymath} Ho(\mathcal{C}) \simeq Ho(C) \,. \end{displaymath} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The component-wise definition depend on the chosen model for $(\infty,1)$-categories, as either \begin{itemize}% \item [[simplicially enriched category]]/ [[topologically enriched categories]] \item [[complete Segal space]] \item [[Segal category]] \item [[quasi-category]] \end{itemize} \hypertarget{in_terms_of_simplicially_enriched_categories}{}\subsubsection*{{In terms of simplicially enriched categories}}\label{in_terms_of_simplicially_enriched_categories} The \textbf{homotopy category} $h C$ of a [[sSet]]-[[enriched category]] $C$ (equivalently of a [[Top]]-[[enriched category]]) is hom-wise the image under the functor \begin{displaymath} \pi_0 : sSet \to Set \,, \end{displaymath} which sends each [[simplicial set]] to its 0th [[homotopy group|homotopy set]] of [[connected]] components, i.e. to the set of [[path component]]s: \begin{displaymath} Hom_{h C}(A,B) := \pi_0(Hom_C(A,B)) \,. \end{displaymath} Sometimes it is useful to regard this after all as an enriched category, but now enriched over the [[homotopy category]] of the standard [[model structure on simplicial sets]] $sSet_{Quillen}$, which is the \emph{homotopy category of an $(\infty,1)$-category} of [[∞Grpd]]. Let $\mathbf{h}: sSet \to Ho(sSet)$ be the localization functor to the [[homotopy category]] (of a [[category with weak equivalences]]). This functor is a [[monoidal functor]] by the fact that the cartesian monoidal product is a left-[[Quillen bifunctor]] for $sSet$, which means that since every object in $sSet$ is cofibrant, it preserves weak equivalences in both arguments and hence descends to the homotopy category \begin{displaymath} \itexarray{ sSet \times sSet &\stackrel{\times}{\to}& sSet \\ \downarrow^{\mathrlap{\mathbf{h} \times \mathbf{h}}} && \downarrow^{\mathrlap{\mathbf{h}}} \\ Ho(sSet) \times Ho(sSet) &\stackrel{\mathbf{h}(\times)}{\to}& Ho(sSet) } \,. \end{displaymath} This inuces a canonical functor $h:sSet Cat\to Ho(sSet) Cat$ which is given by the identity on objects and: $Map_{h C}(A,B):=\mathbf{h} Map_{C}(A,B)$. Then since $Hom_C(A,B)=Hom_{sSet}(\Delta^0,Map_{C}(A,B))$, it is easy to see that $Hom_{hC}(A,B)=Hom_{Ho(sSet)}(\mathbf{h} \Delta^0, \mathbf{h} Map_C(A,B))=\pi_0 Map_C(A,B)$. \hypertarget{in_terms_of_complete_segal_spaces_and_segal_categories}{}\subsubsection*{{In terms of complete Segal spaces and Segal categories}}\label{in_terms_of_complete_segal_spaces_and_segal_categories} Similar, but more complicated, definitions work for [[complete Segal space]]s and [[Segal category|Segal categories]]. \hypertarget{in_terms_of_quasicategories}{}\subsubsection*{{In terms of quasi-categories}}\label{in_terms_of_quasicategories} For [[quasi-category|quasi-categories]], one can write down a definition similar to those of $sSet$-enriched categories. Viewing $C$ as a [[simplicial set]], the homotopy category $hC$ can also be described as its [[fundamental category]] $\tau_1(C)$, i.e. the image of $C$ by the [[left adjoint]] $\tau_1 : SSet \to Cat$ of the [[nerve]] functor $N$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{BrownRepresentability}{}\subsubsection*{{Brown representability}}\label{BrownRepresentability} The [[Brown representability theorem]] characterizes [[representable functors]] on homotopy categories of $(\infty,1)$-categories: \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a [[locally presentable (∞,1)-category]], [[compactly generated (∞,1)-category|generated]] by a set \begin{displaymath} \{S_i \in \mathcal{C}\}_{i \in I} \end{displaymath} of [[compact object in an (infinity,1)-category|compact objects]] (i.e. every object of $\mathcal{C}$ is an [[(∞,1)-colimit]] of the objects $S_i$.) If each $S_i$ admits the structure of a [[cogroup]] object in the [[homotopy category of an (infinity,1)-category|homotopy category]] $Ho(\mathcal{C})$, then a [[functor]] \begin{displaymath} F \;\colon\; Ho(\mathcal{C})^{op} \longrightarrow Set \end{displaymath} (from the [[opposite category|opposite]] of the [[homotopy category of an (infinity,1)-category|homotopy category]] of $\mathcal{C}$ to [[Set]]) is [[representable functor|representable]] precisely if it satisfies these two conditions: \begin{enumerate}% \item $F$ sends small [[coproducts]] to [[products]]; \item $F$ sends [[(∞,1)-pushouts]] $X \underset{Z}{\sqcup}Y$ to [[epimorphisms]], i.e. the canonical morphisms into the [[fiber product]] \begin{displaymath} F\left(X \underset{Z}{\sqcup}Y\right) \stackrel{epi}{\longrightarrow} F(X) \underset{F(Z)}{\times} F(Y) \end{displaymath} are [[surjections]]. \end{enumerate} \end{prop} (\hyperlink{LurieHigherAlgebra}{Lurie ``Higher Algebra'', theorem 1.4.1.2}) \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jacob Lurie]], \href{http://arxiv.org/PS_cache/math/pdf/0608/0608040v4.pdf#page=33}{Section 1.2.3, p. 33} of [[Higher Topos Theory]] \item [[Jacob Lurie]], section 1.4.1 of \emph{[[Higher Algebra]]} \end{itemize} [[!redirects homotopy categories of (infinity,1)-categories]] [[!redirects homotopy category of an (∞,1)-category]] [[!redirects homotopy categories of (∞,1)-categories]] \end{document}