\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy dimension} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} An [[(∞,1)-topos]] $\mathcal{X}$ has \textbf{homotopy dimension} $\leq n \in \mathbb{N}$ if every [[n-connected|(n-1)-connected]] [[object]] $A$ has a [[global element]], a [[morphism]] $* \to A$ from the [[terminal object in an (∞,1)-category|terminal object]] into it. \end{defn} This appears as [[Higher Topos Theory|HTT, def. 7.2.1.1]]. \begin{defn} \label{}\hypertarget{}{} An [[(∞,1)-topos]] $\mathcal{X}$ is \textbf{locally of homotopy dimension} $\leq n \in \mathbb{N}$ if there exists a collection $\{U_i \in \mathcal{X}\}$ of [[object]]s such that \begin{itemize}% \item the $\{U_i\}$ generate $\mathcal{X}$ under [[(∞,1)-colimit]]s; \item each [[over-(∞,1)-topos]] $\mathcal{X}/U_i$ has homotopy dimension $\leq n$. \end{itemize} \end{defn} This appears as [[Higher Topos Theory|HTT, def. 7.2.1.8]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} If an [[(∞,1)-topos]] $\mathcal{X}$ is locally of homotopy dimension $\leq n$ for some $n \in \mathbb{N}$ then it is a [[hypercomplete (∞,1)-topos]]. \end{prop} This appears as [[Higher Topos Theory|HTT, cor. 7.2.1.12]]. \begin{prop} \label{}\hypertarget{}{} If $\mathcal{X}$ has homotopy dimension $\leq n$ then it also has [[cohomological dimension]] $\leq n$. The converse holds if $\mathcal{X}$ has finite homotopy dimension and $n \geq 2$. \end{prop} This appears as [[Higher Topos Theory|HTT, cor. 7.2.2.30]]. \begin{prop} \label{RecognitionByGlobalSections}\hypertarget{RecognitionByGlobalSections}{} An [[(∞,1)-topos]] $\mathcal{X}$ has homotopy dimension $\leq n$ precisely if the [[global section]] [[(∞,1)-geometric morphism]] \begin{displaymath} (\Delta \dashv \Gamma) : \mathcal{X} \stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\to}} \infty Grpd \end{displaymath} has the property that $\Gamma$ sends $(k\geq n)$-[[n-connective|connective]] morphisms to $(k-n)$-[[n-connective|connective]] morphisms. \end{prop} This is [[Higher Topos Theory|HTT, lemma 7.2.1.7]] \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{prop} \label{}\hypertarget{}{} Up to [[equivalence in an (∞,1)-category|equivalence]], the unique [[(∞,1)-topos]] of homotopy dimension $\leq -1$ is the the [[terminal category]] $* \simeq Sh_{(\infty,1)}(\emptyset)$. \end{prop} This is [[Higher Topos Theory|HTT, example. 7.2.1.2]]. \begin{proof} An object $X \in \mathcal{X}$ is $(-1)$-[[connected]] if the morphism $X \to *$to the [[terminal object in an (∞,1)-category]] is. This is the case if it is an [[effective epimorphism]]. Since the [[global section]] [[(∞,1)-functor]] is corepresented by the terminal object, $X$ is 0-connective precisely if $\Gamma(X) \to \Gamma(*) = *$ is an epimorphism on connected components. By the discussion at [[effective epimorphism]], this is the case precisely if $\Gamma(X) \to *$ is an effective epimorphism in [[∞Grpd]]. So $\mathcal{X}$ has homotopy dimension $\leq 0$ if $\Gamma$ preserves effective epimorphisms. This is the case if it preserves [[finite limit|finit]] [[(∞,1)-limit]]s (the [[(∞,1)-pullback]]s defining a [[Cech nerve]]) and all [[(∞,1)-colimit]]s (over the resulting Cech nerve). being a [[right adjoint|right]] [[adjoint (∞,1)-functor]] $\Gamma$ always preserves [[(∞,1)-limit]]s. If $\mathcal{X}$ is [[local (∞,1)-topos|local]] then $\Gamma$ is by definition also a [[left adjoint]] and hence also preserves [[(∞,1)-colimit]]s. \end{proof} \begin{prop} \label{LocalToposesHaveHomotopDimension0}\hypertarget{LocalToposesHaveHomotopDimension0}{} Every [[local (∞,1)-topos]] has homotopy dimension $\leq 0$. \end{prop} \begin{proof} Let \begin{displaymath} (\Delta \dashv \Gamma \dashv \nabla) : \mathbf{H} \to \infty Grpd \end{displaymath} be [[generalized the|the]] [[global section geometric morphism|terminal geometric morphism]] of the local $(\infty,1)$-topos, with $\nabla$ being the extra [[right adjoint]] to the [[global section]] [[(∞,1)-geometric morphism]] functor that characterizes locality. By prop \ref{RecognitionByGlobalSections} it is sufficient to show that $\Gamma$ send [[(-1)-connected]] morphisms to (-1)-connected morphisms, hence [[effective epimorphism in an (∞,1)-category|effective epimorphisms]] to effective epimorphisms. By the existence of $\nabla$ we have that $\Gamma$ preserves not only [[(∞,1)-limit]]s but also [[(∞,1)-colimit]]s. Since effective epimorphisms are defined as certain colimits over diagrams of certain limits, $\Gamma$ preserves effective epimorphisms. \end{proof} So in particular for $C$ any [[(∞,1)-category]] with a [[terminal object in an (∞,1)-category|terminal object]], the [[(∞,1)-category of (∞,1)-presheaves]] $PSh_{(\infty,1)}(C)$ is an [[(∞,1)-topos]] of homotopy dimension $\leq 0$. Notably [[Top]] $\simeq$ [[∞Grpd]] $\simeq PSh_{(\infty,1)}(*)$ has homotopy dimension $\leq 0$. This is [[Higher Topos Theory|HTT, example. 7.2.1.3]]. \begin{prop} \label{}\hypertarget{}{} Every [[(∞,1)-category of (∞,1)-presheaves]] is an [[(∞,1)-topos]] of local homotopy dimension $\leq 0$. \end{prop} This appears as [[Higher Topos Theory|HTT, example. 7.2.1.9]]. \begin{theorem} \label{}\hypertarget{}{} If a [[paracompact topological space]] $X$ has [[covering dimension]] $\leq n$, then the [[(∞,1)-category of (∞,1)-sheaves]] $Sh_{(\infty,1)}(X) := Sh_{(\infty,11)}(Op(X))$ is an [[(∞,1)-topos]] of homotopy dimension $\leq n$. \end{theorem} This is [[Higher Topos Theory|HTT, theorem 7.2.3.6]]. \begin{prop} \label{}\hypertarget{}{} For $X \in$ [[∞Grpd]] $\simeq$ [[Top]] an object, the [[over-(∞,1)-topos]] $\infty Grpd/X$ has homotopy dimension $\leq n$ precisely if $X \in Top$ a [[retract]] in the [[homotopy category of an (∞,1)-category|homotopy category]] $Ho(Top)$ of a [[CW-complex]] of [[dimension]] $\leq n$. \end{prop} This is [[Higher Topos Theory|HTT, example 7.2.1.4]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[dimension]] \begin{itemize}% \item \textbf{homotopy dimension} \item [[cohomological dimension]] \item [[covering dimension]] \item [[Heyting dimension]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The [[(∞,1)-topos theory|(∞,1)-topos theoretic]] notion is discuss in section 7.2.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} \end{document}