\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy exact square} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-category theory}}\label{category_theory} [[!include quasi-category theory - contents]] \hypertarget{homotopy_exact_squares}{}\section*{{Homotopy exact squares}}\label{homotopy_exact_squares} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{characterization}{Characterization}\dotfill \pageref*{characterization} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{comma_squares}{Comma squares}\dotfill \pageref*{comma_squares} \linebreak \noindent\hyperlink{fully_faithful_functors}{Fully faithful functors}\dotfill \pageref*{fully_faithful_functors} \linebreak \noindent\hyperlink{final_functors}{Final functors}\dotfill \pageref*{final_functors} \linebreak \noindent\hyperlink{PullbacksOfFibrations}{Pullbacks of fibrations}\dotfill \pageref*{PullbacksOfFibrations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{homotopy exact square} is the analogue of an [[exact square]] which applies to [[homotopy Kan extensions]], or equivalently to [[(∞,1)-Kan extensions]]. It is especially important in the theory of [[derivators]], which provide a calculus for computing with homotopy Kan extensions whose primary tool is the use of homotopy exact squares. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $A$, $B$, $C$, and $D$ be small [[categories]], and consider a square of [[functors]] \begin{displaymath} \itexarray{A & \overset{f}{\to} & B\\ ^u\downarrow & \swArrow & \downarrow^v\\ C& \underset{g}{\to} & D} \end{displaymath} which is inhabited by a [[natural transformation]] (which might be an [[identity]]). Let $M$ be either \begin{itemize}% \item a [[model category]], \item a [[simplicially enriched category]] (or a topologically enriched category, or a [[dg-category]]), \item an [[(∞,1)-category]] (of any sort), or \item a [[derivator]]. \end{itemize} We write $M^A$, $M^B$, etc. for the model categories, simplicial categories, $(\infty,1)$-categories, or homotopy categories of diagrams in $M$ of whatever shape. We write $f^*\colon M^B\to B^A$, $g^*\colon M^D\to M^C$, and so on for precomposition functors, which are always homotopically meaningful, and we write $u_!\colon M^A\to M^C$, $v_!\colon M^B\to M^D$ and so on for the homotopically meaningful notions of pointwise [[left Kan extension]]. Specifically: \begin{itemize}% \item If $M$ is a model category, then $u_!$ denotes the left [[derived functor]] of pointwise Kan extension along $u$. \item If $M$ is a simplicially enriched category, then $u_!$ is the coherent pointwise [[homotopy left Kan extension]] along $u$, which may be defined explicitly in various ways, such as using a [[bar construction]]. \item If $M$ is an $(\infty,1)$-category, then $u_!$ denotes the pointwise [[(∞,1)-Kan extensions]] along $u$. \item If $M$ is a derivator, then $u_!$ simply denotes the left adjoint of $u^*$ (which is assumed to exist and to ``be pointwise'' by the derivator axioms). \end{itemize} Assume that $M$ is such that the relevant extensions $u_!$ and $v_!$ exist. Then there is a canonical [[Beck-Chevalley transformation]] \begin{displaymath} u_! f^* \to g^* v_! \end{displaymath} defined as the composite \begin{displaymath} u_! f^* \to u_! f^* v^* v_! \to u_! u^* g^* v_! \to g^* v_!. \end{displaymath} and we say that the given square is \textbf{$M$-exact} if this transformation is an [[equivalence]]. If the square is $M$-exact for all $M$, we say it is \textbf{homotopy exact}. Note that by the general calculus of [[mates]], this is equivalent to requiring that the dual transformation \begin{displaymath} v^* g_* \to f_* u^* \end{displaymath} is an equivalence, where $f_*$ and $g_*$ denote the analogous sort of \emph{right} Kan extension. Of course when we say ``for all $M$'' we need to specify what sorts of $M$ we consider. However, we actually get the \emph{same} definition regardless of whether we mean ``for all model categories $M$'' or ``for all simplicially enriched categories $M$'' or ``for all $(\infty,1)$-categories $M$'' or ``for all derivators $M$''. This is a nontrivial theorem, especially in the case of derivators. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} Since any 1-category is a degenerate sort of $(\infty,1)$-category, any homotopy exact square is [[exact square|exact]] in the usual 1-categorical sense, but the converse is not true. This also implies that a square can be $M$-exact for some particular $M$ without being homotopy exact. However, there exists a ``universal'' $M$ such that $M$-exactness is equivalent to homotopy exactness, namely $M=\infty Gpd$. \hypertarget{characterization}{}\subsection*{{Characterization}}\label{characterization} Of course, the above definition is ``functional'', while in practice we want some more combinatorial characterization which is easier to check. This can be done completely analogously to the characterization of ordinary [[exact squares]] using comma objects, except that at the last step we need to consider a more restricted notion of ``equivalence'' (i.e. a more restricted [[basic localizer]]). The characterization is the following. Given $b\in B$ and $c\in C$ and $\varphi\colon v(b) \to g(c)$, let $(b/A/c)_\varphi$ denote the category whose objects are triples $(a,\alpha,\beta)$ with $\alpha\colon u(a)\to c$ and $\beta\colon b\to f(a)$ such that $g(\alpha) \circ v(\beta) = \varphi$, and whose morphisms are morphisms $a\to a'$ making two triangles commute. \begin{utheorem} A square is homotopy exact if and only if each category $(b/A/c)_\varphi$ has a [[contractible space|contractible]] [[nerve]]. \end{utheorem} \begin{itemize}% \item See \href{/nlab/show/exact+square#CommaObj}{exact square} for the proof that is being generalized. \item See \href{/nlab/show/derivator#ExactSquares}{derivator} for the proof in the case of derivators, which relies on Cisinski's characterization of [[basic localizers]]. \item The proof in the (∞,1)-categorical case generalizes the characterization of \href{/nlab/show/final+(∞,1%29-functor#Properties}{final (∞,1)-functors}. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{comma_squares}{}\subsubsection*{{Comma squares}}\label{comma_squares} Any [[comma square]] is homotopy exact. In other words, if $A=(v/g)$ is the [[comma category]] with $f$ and $u$ the canonical projections, then the square is homotopy exact. If in addition $C=*$ is the [[terminal category]], then $g$ just picks out an object $d\in D$ and $A$ is the comma category $(v/d)$; thus this says that (pointwise) homotopy Kan extensions can be computed pointwise as homotopy limits over such comma categories. \hypertarget{fully_faithful_functors}{}\subsubsection*{{Fully faithful functors}}\label{fully_faithful_functors} If $u\colon A\to B$ is a [[fully faithful functor]], then the square \begin{displaymath} \itexarray{A & \overset{id}{\to} & A\\ ^{id}\downarrow && \downarrow^u\\ A & \underset{u}{\to} & B} \end{displaymath} is homotopy exact. This just says that the unit $Id_A \to u^* u_!$ is an isomorphism, i.e. that left (and equivalently right) homotopy Kan extensions along $u$ are ``honest'' extensions. \hypertarget{final_functors}{}\subsubsection*{{Final functors}}\label{final_functors} A functor $u\colon A\to B$ is a [[homotopy final functor]] if and only if the square \begin{displaymath} \itexarray{A & \overset{u}{\to} & B\\ \downarrow && \downarrow\\ *& \underset{}{\to} & *} \end{displaymath} is homotopy exact. Homotopy exactness of this square says that for $F\colon B\to M$, the canonical map $hocolim_A u^*F \to hocolim_B F$ is an isomorphism, which is one equivalent definition of when $u$ is homotopy final. In this case, the characterization theorem reduces to saying that $u$ is homotopy final if and only if each comma category $b/u$ has a contractible nerve, which is a known characterization of homotopy final functors. \hypertarget{PullbacksOfFibrations}{}\subsubsection*{{Pullbacks of fibrations}}\label{PullbacksOfFibrations} This example is due to \hyperlink{Groth}{Moritz Groth}. Let $p\colon C\to D$ be a [[Grothendieck opfibration]], and suppose that \begin{displaymath} \itexarray{ A & \xrightarrow{u} & C \\ ^v\downarrow && \downarrow^p\\ B & \xrightarrow{q} & D } \end{displaymath} is a [[pullback]] in [[Cat]]. Then we claim that this square is homotopy exact. For a proof, suppose given $b\in B$ and $c\in C$ and a morphism $\phi\colon p(c) \to q(b)$, and let $X$ be the category whose contractibility we must check. By definition, since $A = B\times_D C$, an object of $X$ consists of objects $c'\in C$ and $b'\in B$ such that $p(c') = q(b')$, and morphisms $\alpha\colon c\to c'$ and $\beta\colon b' \to b$ such that $q(\beta) . p(\alpha) = \phi$. Let $Y$ be the full subcategory of $X$ consisting of those objects with $b'=b$ and $\beta$ the identity, so that an object of $Y$ is an object $c'\in C$ such that $p(c') = q(b)$ together with a morphism $\alpha\colon c\to c'$ such that $p(\alpha) = \phi$. Then the inclusion $Y\hookrightarrow X$ has a left adjoint, which sends $(b',c',\alpha,\beta)$ to $(b, q(\beta)_!(c'), \overline{q(\beta)}.\alpha, 1_b)$, where $\overline{q(\beta)}\colon c' \to q(\beta)_!(c')$ is an opcartesian arrow over $q(\beta)$. Therefore, the nerves of $Y$ and $X$ are homotopy equivalent. But $Y$ has an initial object, namely $(\phi_!(c), \overline{\phi})$, where $\overline{\phi}\colon c \to \phi_!(c)$ is an opcartesian arrow over $\phi$. Thus the nerve of $Y$ is contractible, and thus so is the nerve of $X$. Groth has also proved that homotopy-exactness of such squares can be used to replace that of comma squares in the definition of a [[derivator]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item An \href{http://golem.ph.utexas.edu/category/2010/06/exact_squares.html}{nCaf\'e{} post} about (mostly ordinary) [[exact squares]] \item [[Moritz Groth]], ``Derivators, pointed derivators, and stable derivators'' \href{http://www.math.uni-bonn.de/~mgroth/groth_derivators.pdf}{PDF} \end{itemize} \begin{itemize}% \item [[Georges Maltsiniotis]], ``Carr\'e{}s exacts homotopiques, et d\'e{}rivateurs'', Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques 53 (2012), 3-63 \href{http://webusers.imj-prg.fr/~georges.maltsiniotis/ps/carhex.pdf}{PDF} \end{itemize} [[!redirects homotopy exact squares]] [[!redirects homotopically exact square]] [[!redirects homotopically exact squares]] \end{document}