\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy factorization system} \hypertarget{homotopy_factorization_systems}{}\section*{{Homotopy factorization systems}}\label{homotopy_factorization_systems} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_enriched_case}{The enriched case}\dotfill \pageref*{the_enriched_case} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{the_unenriched_case}{The unenriched case}\dotfill \pageref*{the_unenriched_case} \linebreak \noindent\hyperlink{definition_2}{Definition}\dotfill \pageref*{definition_2} \linebreak \noindent\hyperlink{relation_between_definitions}{Relation between definitions}\dotfill \pageref*{relation_between_definitions} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{homotopy factorization system} in a [[model category]] is a presentation of an [[orthogonal factorization system in an (∞,1)-category|orthogonal factorization system]] in its [[simplicial localization|underling]] [[(∞,1)-category]]. \hypertarget{the_enriched_case}{}\subsection*{{The enriched case}}\label{the_enriched_case} \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} Let $V$ be a [[monoidal model category]] (with cofibrant unit object) and $M$ a $V$-[[enriched model category]]. In the case $V =$ [[SSet]], the following definition is found in \hyperlink{Bousfield}{Bousfield, section 6}. $\backslash$begin\{definition\} A \textbf{homotopy factorization system} in $M$ is a pair $(L,R)$ of classes of maps such that: \begin{enumerate}% \item Every map in $L$ is a cofibration, and every map in $R$ is a fibration. \item If $i:A\to B$ is in $L$ and $p:X\to Y$ is in $R$, then the induced [[pullback power]]\begin{displaymath} [i,p] : [B,X] \to [A,X] \times_{[A,Y]} [B,Y] \end{displaymath} is an acyclic fibration in $V$. \item Every morphism in $M$ factors as a map in $L$ followed by a map in $R$. \item $L$ and $R$ are closed under [[retracts]]. \end{enumerate} $\backslash$end\{definition\} \hypertarget{remarks}{}\subsubsection*{{Remarks}}\label{remarks} It follows that $(L,R)$ is in fact a [[weak factorization system]]. For on the one hand; the underlying-set functor $V(I,-) : V\to Set$ takes acyclic fibrations to surjections since $I$ is cofibrant; thus $(L,R)$ have the lifting property. And on the other hand, if $i$ has the left lifting property against $R$, then factoring it and applying the retract argument implies $i\in L$, and dually. Note that $[i,p]$ is automatically a fibration, since $i$ is a cofibration and $p$ a fibration; thus the content of assertion (2) is that this map is a weak equivalence. If $A$ (hence also $B$) is cofibrant and $Y$ (hence also $X$) is fibrant, then the pullback $[A,X] \times_{[A,Y]} [B,Y]$ is pullback of two fibrations between fibrant objects and thus a [[homotopy pullback]]; thus in this case the condition is equivalent to asking that the square $\backslash$begin\{center\} $\backslash$begin\{tikzcd\} \{\}B,X $\backslash$arr $\backslash$ard \& \{\}A,X $\backslash$ard$\backslash$ \{\}B,Y $\backslash$arr \& \{\}A,Y $\backslash$end\{tikzcd\} $\backslash$end\{center\} is a homotopy pullback square. If $V$ is [[right proper]], then the condition for the pullback to be a homotopy pullback can be weakened to ``$A$ (hence also $B$) is cofibrant OR $Y$ (hence also $X$) is fibrant'', and thus becomes automatic if either all objects of $M$ are fibrant or all objects of $M$ are cofibrant. \hypertarget{the_unenriched_case}{}\subsection*{{The unenriched case}}\label{the_unenriched_case} \hypertarget{definition_2}{}\subsubsection*{{Definition}}\label{definition_2} A hierarchy of notions of ``homotopy factorization system'' for unenriched model categories can be found in \hyperlink{Joyal}{Joyal, Appendix F}. Let $M$ be a model category and $(L,R)$ a pair of classes of maps. Write $C$ for the class of cofibrations, $F$ for the class of fibrations, $M_{c}$ for the subcategory of cofibrant objects, $M_f$ for the subcategory of fibrant objects, $M_{c f}$ for the subcategory of fibrant and cofibrant objects, $C_{c f}$ for the class of cofibrations between fibrant and cofibrant objects, etc. $\backslash$begin\{definition\} \begin{itemize}% \item $(L,R)$ is a \textbf{weak homotopy factorization system} if\begin{enumerate}% \item $L$ and $R$ are closed under weak equivalence in the [[arrow category]] $M^\to$, and \item $(L\cap C_{c f}, R\cap F_{c f})$ is a [[weak factorization system]] in $M_{c f}$. \end{enumerate} \item $(L,R)$ is a \textbf{homotopy factorization system} if it is a weak homotopy factorization system and in addition\begin{enumerate}% \item If $f\in L$ and $g f\in L$, then $g\in L$. \item If $g\in R$ and $g f\in R$, then $f\in R$. \end{enumerate} \item $(L,R)$ is a \textbf{strong homotopy factorization system} if it is a homotopy factorization system and in addition\begin{enumerate}% \item $(L\cap C, R\cap F)$ is a weak factorization system in $M$. \end{enumerate} \end{itemize} $\backslash$end\{definition\} \hypertarget{relation_between_definitions}{}\subsection*{{Relation between definitions}}\label{relation_between_definitions} The relation between the enriched and unenriched notions is unclear to the author of this page, but here are some things that can be said. $\backslash$begin\{proposition\} Suppose either every object of $M$ is fibrant and cofibrant, or $V$ is right proper and either every object of $M$ is fibrant or every object of $M$ is cofibrant. Then given an enriched hfs, by closing $L$ and $R$ under weak equivalence in $M^\to$ we obtain an unenriched weak hfs $(L',R')$. $\backslash$end\{proposition\} $\backslash$begin\{proof\} Since $(L,R)$ is a wfs, to show that $(L',R')$ is an unenriched weak hfs, it suffices to show that $L'\cap C_{c f} = L \cap C_{c f}$ and dually. Note that any morphism in $C_{c f}$ is both cofibrant and fibrant in the Reedy model structure on $M^\to$; hence if two such morphisms are weakly equivalent in $M^\to$, there is a single weak equivalence relating them. But the property of being a homotopy pullback square is preserved under weak equivalence; and under the given hypotheses, as remarked above, the homotopy lifting property can be expressed in terms of such a square, and is thus preserved by weak equivalences between cofibrations. The proof for $R$ is dual (using the other Reedy model structure). $\backslash$end\{proof\} It is unclear whether or under what conditions this weak hfs is a hfs or a strong hfs. In the converse direction, the following are proven by \hyperlink{Joyal}{Joyal}: \begin{itemize}% \item An unenriched weak hfs $(L,R)$ is determined by $(L\cap C_{c f}, R\cap F_{c f})$ (called its \textbf{center}). \item If $(L,R)$ is an unenriched weak hfs, then $L\cap C_C$ has the left lifting property against $R\cap F_f$. \item If $(L,R)$ is an unenriched weak hfs, then every morphism from a cofibrant object to a fibrant one factors as a map in $L\cap C_c$ followed by one in $R\cap F_f$. \end{itemize} $\backslash$begin\{proposition\} If $(L,R))$ is an unenriched weak hfs, the following are equivalent: \begin{enumerate}% \item If $f\in L$ and $g f\in L$, then $g\in L$. \item If $g\in R$ and $g f\in R$, then $f\in R$. \item The codiagonal of any map in $L\cap C_c$ belongs to $L$. \item The diagonal of any map in $R\cap F_f$ belongs to $R$. \item if $f\in L\cap C_{c f}$ and $g f \in L\cap C_{c f}$ and $g\in C$, then $g\in L$. \item if $g\in R\cap F_{c f}$ and $g f \in R\cap F_{c f}$ and $f\in F$, then $f\in R$. \end{enumerate} $\backslash$end\{proposition\} The closure under diagonals and codiagonals suggests that some kind of homotopy orthogonality should exist, using [[simplicial resolutions]] rather than enrichment. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[A. K. Bousfield]], \emph{Constructions of factorization systems in categories}, Journal of Pure and Applied Algebra 9 (1977) 207-220, \href{http://web.math.rochester.edu/people/faculty/doug/otherpapers/Bousfield_Fact.pdf}{pdf} \item [[Andre Joyal]], \emph{Notes on quasi-categories}, \href{http://www.math.uchicago.edu/~may/IMA/Joyal.pdf}{pdf} \end{itemize} [[!redirects homotopy factorization system]] [[!redirects homotopy factorization systems]] [[!redirects weak homotopy factorization system]] [[!redirects weak homotopy factorization systems]] [[!redirects strong homotopy factorization system]] [[!redirects strong homotopy factorization systems]] [[!redirects homotopy factorization system in a model category]] [[!redirects homotopy factorization systems in a model category]] [[!redirects factorization system in a model category]] [[!redirects factorization systems in a model category]] [[!redirects orthogonal factorization system in a model category]] [[!redirects orthogonal factorization systems in a model category]] \end{document}