\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy groups of spheres} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{homotopy_groups_of_spheres}{}\section*{{Homotopy groups of spheres}}\label{homotopy_groups_of_spheres} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Tables}{Tables}\dotfill \pageref*{Tables} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{serre_finiteness_theorem}{Serre finiteness theorem}\dotfill \pageref*{serre_finiteness_theorem} \linebreak \noindent\hyperlink{nishida_nilpotence_theorem}{Nishida nilpotence theorem}\dotfill \pageref*{nishida_nilpotence_theorem} \linebreak \noindent\hyperlink{RelationToFramedBordismRing}{Relation to the framed bordism ring}\dotfill \pageref*{RelationToFramedBordismRing} \linebreak \noindent\hyperlink{jhomomorphism_and_adams_einvariant}{J-homomorphism and Adams e-invariant}\dotfill \pageref*{jhomomorphism_and_adams_einvariant} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{image_of_the_jhomomorphism}{Image of the J-homomorphism}\dotfill \pageref*{image_of_the_jhomomorphism} \linebreak \noindent\hyperlink{formalization_in_homotopy_type_theory}{Formalization in homotopy type theory}\dotfill \pageref*{formalization_in_homotopy_type_theory} \linebreak \vspace{.5em} \hrule \vspace{.5em} \begin{quote}% My initial inclination was to call this book \emph{[[The Music of the Spheres]]}, but I was dissuaded from doing so by my diligent publisher, who is ever mindful of the sensibilities of librarians. (\hyperlink{Ravenel86}{D. Ravenel 86, preface}) With all due respect to anyone interested in them, the stable homotopy groups of spheres are a mess. ([[Stable homotopy and generalised homology|J. F. Adams 74, p 204]]) \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[homotopy groups]] of [[spheres]] $\pi_{n+k}(S^n)$ are the [[homotopy classes]] of maps $S^{n+k} \longrightarrow S^n$ \begin{displaymath} \pi_{n+k}(S^n) \coloneqq [S^{n+k}, S^n] \,. \end{displaymath} For fixed $k$, the [[colimit]] over $n$ with respect to the [[suspension]] homomorphism \begin{displaymath} \pi_{n+k}(S^n) \longrightarrow \pi_{n+k+1}(S^{n+1}) \end{displaymath} over all $\pi_{n+k}(S^n)$ (called the $k$-[[stem]]) is called the \emph{[[stable homotopy groups]] of spheres} (also: the ``stable $k$-[[stem]]'') \begin{displaymath} \pi_k^S = \coloneqq \underset{\longrightarrow}{\lim}_n \pi_{n+k}(S^n) \,. \end{displaymath} In fact, by the [[Freudenthal suspension theorem]], the value of the $\pi_{n+k}(S^n)$ stabilizes for $n \gt k+1$ (depend only on $k$ in this range), whence the name. The [[stable homotopy groups]] of sphere are equivalently the [[homotopy groups of a spectrum]] for the [[sphere spectrum]] $\mathbb{S}$ \begin{displaymath} \pi_k^S = \pi_k(\mathbb{S}) \,. \end{displaymath} The stable homotopy groups of spheres are notorious for their immense computational richness. Many of the tools of [[algebraic topology]] and [[stable homotopy theory]] were devised to compute more and more of the stable stems. This notably include the [[Adams spectral sequence]], the [[Adams-Novikov spectral sequence]]. \hypertarget{Tables}{}\subsection*{{Tables}}\label{Tables} The first few stable homotopy groups of the [[sphere spectrum]] $\mathbb{S}$ are \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l} $k =$&0&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&$\cdots$\\ \hline $\pi_k(\mathbb{S}) =$&$\mathbb{Z}$&$\mathbb{Z}/2$&$\mathbb{Z}/2$&$\mathbb{Z}/{24}$&$0$&$0$&$\mathbb{Z}/2$&$\mathbb{Z}/{240}$&$(\mathbb{Z}/2)^2$&$(\mathbb{Z}/2)^3$&$\mathbb{Z}/6$&$\mathbb{Z}/{504}$&$0$&$\mathbb{Z}/3$&$(\mathbb{Z}/2)^2$&$\mathbb{Z}/{480} \oplus \mathbb{Z}/2$&$\cdots$\\ \end{tabular} The following tables show the [[p-primary group|p-primary decomposition]] of these and the following stable homotopy groups. The horizontal index is the degree $n$ of the stable homotopy group $\pi_n$. The appearance of a string of $k$ connected dots vertically above index $n$ means that there is a [[direct sum|direct summand]] [[primary group]] of [[order of a group|order]] $p^k$. The bottom rows in each case are given by the [[image of the J-homomorphism]]. See at \emph{\href{fundamental+theorem+of+finitely+generated+abelian+groups#GraphicalRepresentation}{fundamental theorem of finitely generated abelian grouops -- Graphical representation}} for details on the notation used in these table, and see example \ref{InterpretTable} below for illustration. (the following graphics are taken from \hyperlink{Hatcher}{Hatcher}, based on (\hyperlink{Ravenel86}{Ravenel 86}) \textbf{$p = 2$-primary component} \textbf{$p = 3$-primary component} \textbf{$p = 5$-primary component} \begin{example} \label{InterpretTable}\hypertarget{InterpretTable}{} The [[finite abelian group]] $\pi_3(\mathbb{S}) \simeq \mathbb{Z}_{24}$ decomposes into [[primary groups]] as $\simeq \mathbb{Z}_8 \oplus \mathbb{Z}_3$. Here $8 = 2^3$ corresponds to the three dots above $n = 3$ in the first table, and $3 = 3^1$ to the single dot over $n = 3$ in the second. The [[finite abelian group]] $\pi_7(\mathbb{S}) \simeq \mathbb{Z}_{240}$ decomposes into [[primary groups]] as $\simeq \mathbb{Z}_{16} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$. Here $16 = 2^4$ corresponds to the four dots above $n = 7$ in the first table, and $3 = 3^1$ to the single dot over $n = 7$ in the second and $5 = 5^1$ to the single dot over $n = 7$ in the third table. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{serre_finiteness_theorem}{}\subsubsection*{{Serre finiteness theorem}}\label{serre_finiteness_theorem} \begin{theorem} \label{}\hypertarget{}{} \textbf{([[Serre finiteness theorem]])} The [[homotopy group]] $\pi_{n+k}(S^k)$ is a [[finite group]] except \begin{enumerate}% \item for $n = 0$ in which case $\pi_k(S^k) = \mathbb{Z}$; \item $k = 2m$ and $n = 2m -1$ in which case \begin{displaymath} \pi_{4m - 1}(S^{2m}) \simeq \mathbb{Z} \oplus F_m \end{displaymath} for $F_m$ a [[finite group]]. \end{enumerate} \end{theorem} (\hyperlink{Serre53}{Serre 53}) \hypertarget{nishida_nilpotence_theorem}{}\subsubsection*{{Nishida nilpotence theorem}}\label{nishida_nilpotence_theorem} The [[Nishida nilpotence theorem]]\ldots{} \hypertarget{RelationToFramedBordismRing}{}\subsubsection*{{Relation to the framed bordism ring}}\label{RelationToFramedBordismRing} By [[Thom's theorem]], for any [[(B,f)-structure]] $\mathcal{B}$, there is an [[isomorphism]] (of [[commutative rings]]) \begin{displaymath} \Omega^{\mathcal{B}}_\bullet \overset{\simeq}{\longrightarrow} \pi_\bullet(M\mathcal{B}) \end{displaymath} from the [[cobordism ring]] of manifolds with stable normal $\mathcal{B}$-structure to the [[homotopy groups of a spectrum|homotopy groups]] of the universal $\mathcal{B}$-[[Thom spectrum]]. Now for $\mathcal{B} = Fr$ [[framing]] structure, then \begin{displaymath} M Fr \simeq \mathbb{S} \end{displaymath} is equivalently the [[sphere spectrum]]. Hence in this case [[Thom's theorem]] states that there is an isomorphism \begin{displaymath} \Omega^{fr}_\bullet \overset{\simeq}{\longrightarrow} \pi_\bullet(\mathbb{S}) \end{displaymath} between the framed cobordism ring and the stable homotopy groups of spheres. For discussion of computation of $\pi_\bullet(\mathbb{S})$ this way, see for instance (\hyperlink{WangXu10}{Wang-Xu 10, section 2}) and (\hyperlink{Putnam}{Putnam}). For instance \begin{itemize}% \item $\Omega^{fr}_0 = \mathbb{Z}$ because there are two $k$-framings on a single point, corresponding to $\pi_0(O(k)) \simeq \mathbb{Z}_2$, the negative of a point with one framing is the point with the other framing, and so under disjoint union, the framed points form the group of integers; \item $\Omega^{fr}_1 = \mathbb{Z}_2$ because the only compact connected 1-manifold is the circle, there are two framings on the circle, corresponding to $\pi_1(O(k)) \simeq \mathbb{Z}_2$ and they are their own negatives. \end{itemize} \hypertarget{jhomomorphism_and_adams_einvariant}{}\subsubsection*{{J-homomorphism and Adams e-invariant}}\label{jhomomorphism_and_adams_einvariant} The following characterizes the [[image]] of the [[J-homomorphism]] \begin{displaymath} J \;\colon\; \pi_\bullet(O) \longrightarrow \pi_\bullet(\mathbb{S}) \end{displaymath} from the [[homotopy groups]] of the [[stable orthogonal group]] to the stable homotopy groups of spheres. This was first conjectured in (\hyperlink{Adams66}{Adams 66}) (since called the \emph{Adams conjecture}) and then proven in (\hyperlink{Quillen71}{Quillen 71}). \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{\href{orthogonal%20group#HomotopyGroups}{orthogonal group -- homotopy groups}} we have that the [[homotopy groups]] of the [[stable orthogonal group]] are \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline $\pi_n(O)$&$\mathbb{Z}_2$&$\mathbb{Z}_2$&0&$\mathbb{Z}$&0&0&0&$\mathbb{Z}$\\ \end{tabular} Because all groups appearing here and in the following are [[cyclic groups]], we instead write down the [[order of a group|order]] \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline ${\vert\pi_n(O)\vert}$&2&2&1&$\infty$&1&1&1&$\infty$\\ \end{tabular} \end{remark} \begin{theorem} \label{}\hypertarget{}{} The [[stable homotopy groups of spheres]] $\pi_n(\mathbb{S})$ are the [[direct sum]] of the ([[cyclic group|cyclic]]) [[image]] of the [[J-homomorphism]], and the [[kernel]] of the [[Adams e-invariant]]. Moreover, \begin{itemize}% \item for $n = 0 \;mod \;$ and $n = 1 \;mod \; 8$ and $n$ positive the J-homomorphism is [[injection|injective]], hence its image is $\mathbb{Z}_2$, \item for $n = 3\; mod\; 8$ and $n = 7 \; mod \; 8$ hence for $n = 4 k -1$, the [[order of a group|order]] of the image is equal to the [[denominator]] of $B_{2k}/4k$, where $B_{2k}$ is the [[Bernoulli number]] \item for all other cases the image is necessarily zero. \end{itemize} \end{theorem} [[!include image of J -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[EHP spectral sequence]] \item [[Adams–Novikov spectral sequence]] \item [[Music of the Spheres]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Introductions and surveys include \begin{itemize}% \item Alex Wright, \emph{Homotopy groups of spheres: A very basic introduction} (\href{http://www-personal.umich.edu/~alexmw/HomotopyGroupsOfSoheres.pdf}{pdf}) \item [[Guozhen Wang]], Zhouli Xu \emph{A survey of computations of homotopy groups of Spheres and Cobordisms}, 2010 (\href{http://math.mit.edu/~guozhen/homotopy%20groups.pdf}{pdf}) \item [[Andrew Putman]], \emph{Homotopy groups of spheres and low-dimensional topology} (\href{http://www.math.rice.edu/~andyp/notes/HomotopySpheresLowDimTop.pdf}{pdf}) \item [[Allen Hatcher]], \emph{Pictures of stable homotopy groups of spheres} (\href{http://www.math.cornell.edu/~hatcher/stemfigs/stems.html}{html}) \item [[Mark Mahowald]], [[Doug Ravenel]], \emph{Towards a Global Understanding of the Homotopy Groups of Spheres} (\href{http://www.math.rochester.edu/people/faculty/doug/mypapers/global.pdf}{pdf}) \item [[Haynes Miller]], [[Doug Ravenel]], \emph{Mark Mahowald's work on the homotopy groups of spheres} (\href{http://www-math.mit.edu/~hrm/ksem/miller-ravenel.pdf}{pdf}) \item [[eom]], \emph{\href{http://www.encyclopediaofmath.org/index.php/Spheres,_homotopy_groups_of_the}{Spheres, homotopy groups of the}} \item [[Doug Ravenel]], \emph{[[Complex cobordism and stable homotopy groups of spheres]]}, since 1986 (\href{http://www.math.rochester.edu/people/faculty/doug/mu.html}{web}) \item [[Stanley Kochmann]], \emph{Stable Homotopy Groups of Spheres -- A Computer-Assisted Approach}, Lecture Notes in Mathematics, 1990 \item [[Stanley Kochmann]], section 5 of of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} A tabulation of stable homotopy groups of spheres is in \begin{itemize}% \item [[Doug Ravenel]], Appendix 3 of \emph{[[Complex cobordism and stable homotopy groups of spheres]]} (\href{http://www.math.rochester.edu/people/faculty/doug/mybooks/ravenelA3.pdf}{pdf}) \end{itemize} Original articles on basic properties include \begin{itemize}% \item [[Jean-Pierre Serre]] \emph{Groupes d'homotopie et classes de groupes abelien}, Ann. of Math. 58 (1953), 258--294. \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres}{Homotopy groups of spheres}} \item MO, \emph{\href{http://mathoverflow.net/questions/31004/computational-complexity-of-computing-homotopy-groups-of-spheres}{Computational complexity of computing homotopy groups of spheres}} \end{itemize} \hypertarget{image_of_the_jhomomorphism}{}\subsubsection*{{Image of the J-homomorphism}}\label{image_of_the_jhomomorphism} Discussion of the [[image]] of the [[J-homomorphism]] is due to \begin{itemize}% \item [[John Adams]], \emph{On the groups $J(X)$ IV}, Topology 5: 21,(1966) \emph{Correction}, Topology 7 (3): 331 (1968) \item [[Daniel Quillen]], \emph{The Adams conjecture}, Topology. an International Journal of Mathematics 10: 67--80 (1971) \end{itemize} \hypertarget{formalization_in_homotopy_type_theory}{}\subsubsection*{{Formalization in homotopy type theory}}\label{formalization_in_homotopy_type_theory} For formalization in [[homotopy type theory]] see \begin{itemize}% \item [[homotopytypetheory:HomePage|HoTT wiki]], \emph{[[homotopytypetheory:homotopy groups of spheres]]} \item [[UF-IAS-2012]], \emph{\href{http://uf-ias-2012.wikispaces.com/HomotopyGroupsOfSpheres}{HomotopyGroupsOfSpheres}} \item [[Guillaume Brunerie]], \emph{On the homotopy groups of spheres in homotopy type theory} (\href{http://arxiv.org/abs/1606.05916}{arXiv:1606.05916}) \end{itemize} [[!redirects homotopy group of a sphere]] [[!redirects homotopy groups of a sphere]] [[!redirects homotopy groups of spheres]] [[!redirects stable homotopy group of spheres]] [[!redirects stable homotopy groups of spheres]] \end{document}