\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy in a model category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{basic_lemmas}{Basic lemmas}\dotfill \pageref*{basic_lemmas} \linebreak \noindent\hyperlink{equivalence_relation}{Equivalence relation}\dotfill \pageref*{equivalence_relation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The extra structure of a [[model category]] over a [[category with weak equivalences]] induces concrete constructions for expressing [[homotopy]] between [[morphisms]]. These lead in particular to an explicit construction of the [[homotopy category of a model category]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{PathAndCylinderObjectsInAModelCategory}\hypertarget{PathAndCylinderObjectsInAModelCategory}{} Let $\mathcal{C}$ be a [[model category]] and $X \in \mathcal{C}$ an [[object]]. \begin{itemize}% \item A \textbf{[[path object]]} $Path(X)$ for $X$ is a factorization of the [[diagonal]] $\nabla_X \colon X \to X \times X$ as \end{itemize} \begin{displaymath} \nabla_X \;\colon\; X \underoverset{\in W}{i}{\longrightarrow} Path(X) \overset{(p_0,p_1)}{\longrightarrow} X \times X \,. \end{displaymath} where $X\to Path(X)$ is a weak equivalence. This is called a \textbf{good path object} if in addition $Path(X) \to X \times X$ is a fibration. \begin{itemize}% \item A \textbf{[[cylinder object]]} $Cyl(X)$ for $X$ is a factorization of the [[codiagonal]] (or ``fold map'') $\Delta_X X \sqcup X \to X$ as \end{itemize} \begin{displaymath} \Delta_X \;\colon\; X \sqcup X \overset{(i_0,i_1)}{\longrightarrow} Cyl(X) \underoverset{p}{\in W}{\longrightarrow} X \,. \end{displaymath} where $Cyl(X) \to X$ is a weak equivalence. This is called a \textbf{good cylinder object} if in addition $X \sqcup X \to Cyl(X)$ is a cofibration. \end{defn} \begin{remark} \label{RemarkOnChoicesOfNonGoodPathAndCylinderObjects}\hypertarget{RemarkOnChoicesOfNonGoodPathAndCylinderObjects}{} By the factorization axioms every object in a model category has both a good path object and as well as a good cylinder object according to def. \ref{PathAndCylinderObjectsInAModelCategory}. But in some situations one is genuinely interested in using non-good such objects. For instance in the [[classical model structure on topological spaces]], the obvious object $X\times [0,1]$ is a cylinder object, but not a good cylinder unless $X$ itself is cofibrant (a [[cell complex]] in this case). More generally, the path object $Path(X)$ of def. \ref{PathAndCylinderObjectsInAModelCategory} is analogous to the [[powering]] $\pitchfork(I,X)$ with an [[interval object]] and the cyclinder object $Cyl(X)$ is analogous to the [[tensoring]] with a cylinder object $I\odot X$. In fact, if $\mathcal{C}$ is a $V$-[[enriched model category]] and $X$ is fibrant/cofibrant, then these powers and copowers are in fact examples of (good) path and cylinder objects if the [[interval object]] is sufficiently good. \end{remark} \begin{defn} \label{LeftAndRightHomotopyInAModelCategory}\hypertarget{LeftAndRightHomotopyInAModelCategory}{} Let $f,g \colon X \longrightarrow Y$ be two [[parallel morphisms]] in a [[model category]]. \begin{itemize}% \item A \textbf{left homotopy} $\eta \colon f \Rightarrow_L g$ is a morphism $\eta \colon Cyl(X) \longrightarrow Y$ from a [[cylinder object]] of $X$, def. \ref{PathAndCylinderObjectsInAModelCategory}, such that it makes this [[commuting diagram|diagram commute]]: \end{itemize} \begin{displaymath} \itexarray{ X &\longrightarrow& Cyl(X) &\longleftarrow& X \\ & {}_{\mathllap{f}}\searrow &\downarrow^{\mathrlap{\eta}}& \swarrow_{\mathrlap{g}} \\ && Y } \,. \end{displaymath} \begin{itemize}% \item A \textbf{right homotopy} $\eta \colon f \Rightarrow_R g$ is a morphism $\eta \colon X \to Path(Y)$ to some [[path object]] of $X$, def. \ref{PathAndCylinderObjectsInAModelCategory}, such that this [[commuting diagram|diagram commutes]]: \end{itemize} \begin{displaymath} \itexarray{ && X \\ & {}^{\mathllap{f}}\swarrow & \downarrow^{\mathrlap{\eta}} & \searrow^{\mathrlap{g}} \\ Y &\longleftarrow& Path(Y) &\longrightarrow& Y } \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{basic_lemmas}{}\subsubsection*{{Basic lemmas}}\label{basic_lemmas} \begin{lemma} \label{ComponentsOfGoodCylinderOfCofibrantAreAcyclicCofibrationsAndDually}\hypertarget{ComponentsOfGoodCylinderOfCofibrantAreAcyclicCofibrationsAndDually}{} If $X \sqcup X \overset{(i_0,i_1)}{\longrightarrow} Cyl(X) \underoverset{p}{\in W}{\longrightarrow} X$ is a good [[cylinder object]] for a cofibrant object $X$ def. \ref{PathAndCylinderObjectsInAModelCategory}, then both components $i_0, i_1 \colon X \to Cyl(X)$ are acyclic cofibrations. Dually, if $X \underoverset{\in W}{i}{\longrightarrow} Path(X) \overset{(p_0,p_1)}{\longrightarrow} X \times X$ is a good path object for a fibrant object $X$, then both component $p_0,p_1 \colon Path(X)\to X$ are acyclic fibrations. \end{lemma} \begin{proof} We discuss the first case, the second is [[formal dual|formally dual]]. First observe that the two inclusions $X \to X \sqcup X$ are cofibrations, since they are the [[pushout]] of the cofibration $\emptyset \to X$. This implies that $i_0$ and $i_1$ are composites of two cofibrations \begin{displaymath} i_0, i_1 \;\colon\; X \overset{\in Cof}{\longrightarrow} X\sqcup X \overset{\in Cof}{\longrightarrow} \end{displaymath} and hence are themselves cofibrations. That they are in addition weak equivalences follows from [[two-out-of-three]] applied to the identity \begin{displaymath} id_X \;\colon\; X \overset{\in W}{\longrightarrow} Cyl(X) \overset{i_0}{\longrightarrow} X \,. \end{displaymath} implied by the fact that the cylinder by definition factors the [[codiagonal]]. \end{proof} The following says that the choice of cylinder/path objects in def. \ref{LeftAndRightHomotopyInAModelCategory} is irrelevant as long it is ``good''. \begin{lemma} \label{GoodCylinderObjectsSupportEveryLeftHomotopyAndDually}\hypertarget{GoodCylinderObjectsSupportEveryLeftHomotopyAndDually}{} For $\eta \colon f \Rightarrow_L g \colon X \to Y$ a [[left homotopy]] in some [[model category]], def. \ref{LeftAndRightHomotopyInAModelCategory}, such that $Y$ is a fibrant object, then for $Cyl(X)$ any choice of \emph{good} [[cylinder object]] for $X$, def. \ref{PathAndCylinderObjectsInAModelCategory}, there is a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ X &\longrightarrow& Cyl(X) &\longleftarrow& X \\ & {}_{\mathllap{f}}\searrow &\downarrow^{\mathrlap{\tilde \eta}}& \swarrow_{\mathrlap{g}} \\ && Y } \,. \end{displaymath} Dually, for $\eta \colon f \Rightarrow_R g \colon X \to Y$ a [[right homotopy]], def. \ref{LeftAndRightHomotopyInAModelCategory}, such that $X$ is cofibrant, then for $Path(X)$ any choice of \emph{good} [[path object]] for $X$, def. \ref{PathAndCylinderObjectsInAModelCategory}, there is a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ && X \\ & {}^{\mathllap{f}}\swarrow & \downarrow^{\mathrlap{\tilde \eta}} & \searrow^{\mathrlap{g}} \\ Y &\longleftarrow& Path(Y) &\longrightarrow& Y } \,. \end{displaymath} \end{lemma} \begin{proof} We discuss the first statement, the second is [[formal dual|formally dual]]. Let $\eta \colon \hat X \longrightarrow Y$ be the given left homotopy with respect to a given cylinder object $\hat X$ of $X$. Factor it as \begin{displaymath} \eta \;\colon\; \hat X \overset{\in Cof}{\longrightarrow} Z \overset{\in W \cap Fib}{\longrightarrow} Y \,. \end{displaymath} Then find liftings $\ell$ and $k$ in the following two [[commuting diagrams]] \begin{displaymath} \itexarray{ X \sqcup X &\overset{}{\longrightarrow}& \hat X &\longrightarrow& Z \\ \downarrow && & {}^{\mathllap{\ell}}\nearrow & \downarrow \\ Cyl(X) &\longrightarrow& &\longrightarrow& Y } \;\;\;\;\; \,, \;\;\;\;\; \itexarray{ \hat X &\overset{\eta}{\longrightarrow}& Y \\ \downarrow &{}^{\mathllap{k}}\nearrow& \downarrow \\ Z &\longrightarrow& \ast } \,. \end{displaymath} Now the composite $\eta \coloneqq k \circ \ell$ is of the required kind, \begin{displaymath} \itexarray{ X \sqcup X &\overset{}{\longrightarrow}& \hat X &\longrightarrow& Z &\overset{k}{\longrightarrow}& Y \\ \downarrow &&& {}^{\mathllap{\ell}}\nearrow & \\ Cyl(X) &\longrightarrow& } \,. \end{displaymath} \end{proof} \begin{lemma} \label{LeftHomotopyWithCofibrantDomainImpliesRightHomotopyAndDually}\hypertarget{LeftHomotopyWithCofibrantDomainImpliesRightHomotopyAndDually}{} Let $f,g \colon X \to Y$ be two [[parallel morphisms]] in a [[model category]]. \begin{itemize}% \item Let $X$ be cofibrant. If there is a [[left homotopy]] $f \Rightarrow_L g$ then there is also a [[right homotopy]] $f \Rightarrow_R g$ (def. \ref{LeftAndRightHomotopyInAModelCategory}) with respect to any chosen path object. \item Let $Y$ be fibrant. If there is a [[right homotopy]] $f \Rightarrow_R g$ then there is also a [[left homotopy]] $f \Rightarrow_L g$ with respect to any chosen cylinder object. \end{itemize} \end{lemma} \begin{proof} We discuss the first case, the second is [[formal dual|formally dual]]. Let $\eta \colon Cyl(X) \longrightarrow Y$ be the given left homotopy. By lemma \ref{GoodCylinderObjectsSupportEveryLeftHomotopyAndDually} we may assume without restriction that $Cyl(X)$ is \emph{good} in the sense of def. \ref{PathAndCylinderObjectsInAModelCategory}, for otherwise replace it by one that is. With this, lemma \ref{ComponentsOfGoodCylinderOfCofibrantAreAcyclicCofibrationsAndDually} implies that we have a lift $h$ in the following [[commuting diagram]] \begin{displaymath} \itexarray{ X &\overset{i \circ f}{\longrightarrow}& Path(Y) \\ {}^{\mathllap{i_0}}_{\mathllap{\in W \cap Cof}}\downarrow &{}^{\mathllap{h}}\nearrow& \downarrow^{\mathrlap{p_0,p_1}}_{\mathrlap{\in Fib}} \\ Cyl(X) &\underset{(f \circ p,\eta)}{\longrightarrow}& Y \times Y } \,, \end{displaymath} where on the right we have the chosen path space object. Now the composite $\tilde \eta \coloneqq h \circ i_1$ is a right homotopy as required. \begin{displaymath} \itexarray{ && && Path(Y) \\ && &{}^{\mathllap{h}}\nearrow& \downarrow^{\mathrlap{p_0,p_1}}_{\mathrlap{\in Fib}} \\ X &\overset{i_1}{\longrightarrow}& Cyl(X) &\underset{(f \circ p,\eta)}{\longrightarrow}& Y \times Y } \,. \end{displaymath} \end{proof} \hypertarget{equivalence_relation}{}\subsubsection*{{Equivalence relation}}\label{equivalence_relation} \begin{prop} \label{}\hypertarget{}{} For $X$ a cofibrant object in a [[model category]] and $Y$ a [[fibrant object]], then the [[relations]] of [[left homotopy]] $f \Rightarrow_L g$ and of [[right homotopy]] $f \Rightarrow_R g$ (def. \ref{LeftAndRightHomotopyInAModelCategory}) on the [[hom set]] $Hom(X,Y)$ coincide and are both [[equivalence relations]]. \end{prop} \begin{proof} That both relations coincide under the (co-)fibrancy assumption follows directly from lemma \ref{LeftHomotopyWithCofibrantDomainImpliesRightHomotopyAndDually}. To see that left homotopy with domain $X$ is a [[transitive relation]] first use lemma \ref{GoodCylinderObjectsSupportEveryLeftHomotopyAndDually} to obtain that every left homotopy is exhibited by a \emph{good} cylinder object $Cyl(X)$ and then lemma \ref{ComponentsOfGoodCylinderOfCofibrantAreAcyclicCofibrationsAndDually} to see that the cofiber coproduct $Cyl(X)\underset{X}{\sqcup} Cyl(X)$ in \begin{displaymath} \itexarray{ && && X \\ && && \downarrow^{\mathrlap{i_0}} \\ && X &\underoverset{\in W}{i_1}{\longrightarrow}& Cyl(X) \\ && {}^{\mathllap{i_0}}\downarrow &(po)& \downarrow \\ X &\underset{i_1}{\longrightarrow}& Cyl(X) &\underset{\in W}{\longrightarrow}& Cyl(X) \underset{X}{\sqcup} Cyl(X) \\ && &{}_{\mathllap{}}\searrow& & \searrow \\ && && \underset{\in W}{\longrightarrow} &\longrightarrow& X } \end{displaymath} is again a [[cylinder object]], def. \ref{PathAndCylinderObjectsInAModelCategory}. The [[symmetric relation|symmetry]] and [[reflexive relation|reflexivity]] of the relation is obvious. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} See the references at \emph{[[model category]]}. \end{document}