\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy type} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{homotopy_types}{Homotopy $n$-types}\dotfill \pageref*{homotopy_types} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_topological_spaces}{In topological spaces}\dotfill \pageref*{in_topological_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Traditionally, a \emph{homotopy type} is a [[topological space]] regarded up to [[weak homotopy equivalence]], (although this may sometimes be referred to as its \emph{weak homotopy type}, (see below)). Formally this may be taken to mean the [[object]] that $X$ represents in the standard [[homotopy category]] [[Ho(Top)]], or, better, in the [[(∞,1)-category]] [[∞Grpd]] $\simeq$ $L_{whe} Top$, the [[simplicial localization]] of the category [[Top]] at the [[weak homotopy equivalences]], of which $Ho(Top)$ is the [[decategorification]]. As such, topological spaces regarded as homotopy types are equivalently \emph{[[∞-groupoids]]} (see at \emph{[[homotopy hypothesis]]} for more on this). More generally, then, we may think of every object in any [[(∞,1)-topos]] $\mathcal{C}$ as being a \emph{homotopy type in the world of} $\mathcal{C}$ (just as we may think of an object of a 1-topos $\mathcal{S}$ as being a ``set in the world of $\mathcal{S}$''). For instance, if $\mathcal{C} = Sh_\infty(C)$ is an [[(∞,1)-category of (∞,1)-sheaves]]/of [[∞-stacks]] over some [[(∞,1)-site]] $C$, then an object of $\mathcal{C}$ may be thought of as a \emph{homotopy type over $C$}, or a \emph{sheaf of homotopy types}. If $\mathcal{C}$ is the [[classifying topos]] of some [[geometric theory]] $T$, then an object of $\mathcal{C}$ may be called a ``$T$-structured homotopy type''. And if $\mathcal{C}$ is a [[cohesive (∞,1)-topos]], an object of $\mathcal{C}$ may be called a ``cohesive homotopy type''. In the special case that $\mathcal{C} = Sh_\infty(*) \simeq \infty Gprd$, this reproduces the traditional notion. The reason this makes sense is that any $(\infty,1)$-topos has an [[internal language]], which is \emph{[[homotopy type theory]]} --- a formal [[logic]] whose basic objects are abstract things called \emph{homotopy types}, just as the basic objects of [[set theory]] are abstract things called [[sets]]. Inside the internal logic of $\mathcal{C}$, its objects behave like classical homotopy types (although the ambient logic is [[constructive logic|constructive]]). This explains why we can think of objects of $\mathcal{C}$ as ``homotopy types in the world of $\mathcal{C}$'': they are the [[categorical semantics]] of these abstract homotopy types in the internal logic of $\mathcal{C}$. In the special case of $\infty Grpd$, the internal and external logic are the same, so this meaning also includes the classical usage of ``homotopy type''. \hypertarget{homotopy_types}{}\subsubsection*{{Homotopy $n$-types}}\label{homotopy_types} A homotopy type that is an \emph{[[n-truncated object in an (∞,1)-category]]} or equivalently that interprets a [[type]] of \emph{[[homotopy level]]} $n+2$ is also called a \emph{[[homotopy n-type]]} or \emph{$n$-type} for short. For topological spaces / [[∞-groupoids]] this means that all [[homotopy groups]] above degree $n$ are trivial. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{in_topological_spaces}{}\subsubsection*{{In topological spaces}}\label{in_topological_spaces} In traditional [[homotopy theory]] of [[topological spaces]] one sometimes distinguishes the notion of \emph{strong homotopy types} from that of \emph{weak homotopy types}, depending on whether one regards topological spaces up to \emph{[[homotopy equivalence]]} or up to \emph{[[weak homotopy equivalence]]} (see also there the section \emph{\href{weak+homotopy+equivalence#RelationToHomotopyTypes}{Relation to homotopy types}}). The two notions agree on good [[cofibrant object|cofibrant spaces]], namely on the [[CW-complexes]] (see [[model structure on topological spaces]]) and for homotopy theory proper it is the \emph{weak} homotopy equivalences that matter. More precisely, weak homotopy equivalences between spaces give an equivalence relation on the class of topological spaces, and referring to a \emph{homotopy type} means that you are to consider properties of a space that are shared by any of the spaces weakly equivalent to it and thus in that [[equivalence class]]. In this expanded sense, therefore, a \textbf{homotopy type} is such a weak equivalence class of spaces. Using the terminology from [[homotopy category]], two spaces \emph{have the same homotopy type} if they are isomorphic in [[Ho(Top)]]. By standard theorems, homotopy types in topological can also be `modeled' by many other structures, such as \begin{itemize}% \item [[simplicial set|simplicial sets]] up to weak homotopy equivalence; \item small [[category|categories]] up to weak homotopy equivalence of their [[nerves]]; \item $\infty$-[[infinity-groupoid|groupoids]] up to category-theoretic [[equivalence of categories|equivalence]] (this is the content of the [[homotopy hypothesis]]). \end{itemize} In most cases the tools of [[homotopy theory]], in particular [[model category|model categories]], can be used to establish these equivalences. The sense of `modeled' is related to Whitehead's [[algebraic homotopy|algebraic homotopy theory]]. A setting such as those above acts as a model for homotopy types if there are comparison functors between $\Spaces$ and the category, and some notion of homotopy within the category yielding an equivalence of [[homotopy category|homotopy categories]]. \begin{remark} \label{}\hypertarget{}{} Although the notion of homotopy type is defined for arbitrary spaces, it is most usual to restrict attention to `locally [[nice topological space|nice]]' spaces such as polyhedra (i.e. realisations of [[simplicial complex|simplicial complexes]] or CW-complexes). Various other classes of space occur naturally in various parts of mathematics in particular in analysis and algebraic geometry and there the methods of abstract homotopy theory provide a way of mimicking the basic idea of homotopy type as described above. \end{remark} \begin{remark} \label{}\hypertarget{}{} Using variants of `weak equivalence', for instance, `$n$-equivalence', one gets coarser notions of equivalence which can be very useful. The particular case of $n$-equivalence leads to the related notion of [[homotopy n-type]]. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure for homotopy types]] \item [[finite homotopy type]], [[homotopy type with finite homotopy groups]] \item [[geometric homotopy type]] \item [[cohesive homotopy type]] \item [[stable homotopy type]] \item [[homotopy sphere]] \end{itemize} [[!include notions of type]] [[!include homotopy n-types - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Edwin Spanier]], section 7.8 of \emph{Algebraic topology}, McGraw-Hill, 1966 \end{itemize} There are some useful points made in: \begin{itemize}% \item [[H. J. Baues]], \emph{[[Homotopy Types]]}, in \emph{[[Handbook of Algebraic Topology]]}, (edited by [[Ioan Mackenzie James]]), North Holland, 1995. \end{itemize} [[!redirects homotopy types]] [[!redirects weak homotopy type]] [[!redirects strong homotopy type]] \end{document}