\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{hypercomplete (infinity,1)-topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{hypercompletions}{Hypercompletions}\dotfill \pageref*{hypercompletions} \linebreak \noindent\hyperlink{EnoughPoints}{Enough points}\dotfill \pageref*{EnoughPoints} \linebreak \noindent\hyperlink{nonexamples}{Non-examples}\dotfill \pageref*{nonexamples} \linebreak \noindent\hyperlink{goodwillie_jet_toposes}{Goodwillie $n$-jet toposes}\dotfill \pageref*{goodwillie_jet_toposes} \linebreak \noindent\hyperlink{models}{Models}\dotfill \pageref*{models} \linebreak \noindent\hyperlink{ModelCategory}{In terms of model category theory}\dotfill \pageref*{ModelCategory} \linebreak \noindent\hyperlink{in_classical_topos_theory}{In classical topos theory}\dotfill \pageref*{in_classical_topos_theory} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} An [[(∞,1)-topos]] is \textbf{hypercomplete} if the [[Whitehead theorem]] is valid in it. Equivalently: if all its object are [[hypercomplete objects]]. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} All [[geometric morphisms]] $X \to Y$ out of a hypercomplete $(\infty,1)$-topos $X$ factor through the hypercompletion $\hat Y$ of $Y$: the inclusion $\hat Y \hookrightarrow Y$ induces an equivalence \begin{displaymath} Geom(X,\hat Y) \stackrel{\simeq}{\to} Geom(X,Y) \,. \end{displaymath} \end{prop} This is [[Higher Topos Theory|HTT, prop. 6.5.2.13]]. \begin{prop} \label{}\hypertarget{}{} Every [[(∞,1)-topos]] which is [[homotopy dimension|locally of homotopy dimension]] $\leq n$ for some finite $n\geq -1$ is hypercomplete. \end{prop} See the discussion at [[homotopy dimension]] for details and further implications. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{hypercompletions}{}\subsubsection*{{Hypercompletions}}\label{hypercompletions} Every [[(∞,1)-topos]] has a [[hypercompletion]], given by the full [[reflective sub-(∞,1)-category]] spanned by its [[hypercomplete objects]]. \hypertarget{EnoughPoints}{}\subsubsection*{{Enough points}}\label{EnoughPoints} \begin{defn} \label{PointOfAndInfinityTopos}\hypertarget{PointOfAndInfinityTopos}{} For $\mathcal{X}$ an [[(∞,1)-topos]], a \textbf{point} of $\mathcal{X}$ is a [[geometric morphism]] \begin{displaymath} (p^\ast \dashv p_*) \;\colon\; \infty Grpd \stackrel{\overset{\ast}{\leftarrow}}{\underset{p_\ast}{\to}} \mathcal{X} \end{displaymath} from [[∞Grpd]] $\simeq Sh_\infty(\ast)$ to $\mathcal{X}$. We say that $\mathcal{X}$ has \textbf{enough points} if a [[1-morphism]] $f \colon X \to Y$ in $\mathcal{X}$ in an [[equivalence in an (∞,1)-category|equivalence]] in $\mathcal{X}$ precisely if for all such points the [[inverse image]] $p^\ast (f)$ (the \emph{[[stalk]]} at the point) is an [[equivalence of ∞-groupoids|equivalence]] in [[∞Grpd]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} There exist [[1-site|1-sites]] $C$ such that the [[(n,1)-topos|(1,1)-topos]] of sheaves of sets on $C$ has [[point of a topos|enough points in the 1-topos sense]], but such that the corresponding [[n-localic (∞,1)-topos|1-localic (∞,1)-topos]] $\mathcal{X}$ does not have enough points in the sense of def. \ref{PointOfAndInfinityTopos}. An example is given by the site of open subsets of the topological space $\prod_{\mathbb{N}} \{x,z,y\}$ where the topology on $\{x,z,y\}$ is generated by the two open subsets $\{x,y\}$ and $\{x,z\}$. See [[Higher Topos Theory|HTT, Remark 6.5.4.7]]. However, the [[hypercompletion]] $\mathcal{X}^\wedge$ of $\mathcal{X}$ will have enough points. This follows from the fact that $\mathcal{X}^\wedge$ may be presented by the Jardine [[model structure on simplicial presheaves]] on the given site of definition, and that in the presence of enough 1-topos points the [[weak equivalences]] of that model structure are the [[stalk]]-wise weak equivalences in the [[model structure on simplicial sets]]. (See at \emph{[[model structure on simplicial presheaves]]} for details.) \end{remark} \begin{lemma} \label{}\hypertarget{}{} An $(\infty,1)$-topos that has [[point of a topos|enough points]] is hypercomplete. \end{lemma} This is [[Higher Topos Theory|HTT, remark 6.5.4.7]]. \begin{proof} Recall from def. \ref{PointOfAndInfinityTopos} that a [[point of a topos|point of an (∞,1)-topos]] $\mathbf{H}$ is a [[geometric morphism]] $p : \infty Grpd \stackrel{\overset{p^*}{\leftarrow}}{\underset{p_*}{\to}} \mathbf{H}$. And by definition $\mathbf{H}$ has \emph{enough points} if a morphism $F : X \to Y$ in $\mathbf{H}$ is an [[equivalence in a quasi-category|equivalence]] if for all points $p$, the [[stalk]] $p^* f$ is an equivalence in [[? Grpd]]. But if $f$ is $\infty$-[[connected]] in $\mathbf{H}$, then so is $p^* f$ in [[∞Grpd]], which is hypercomplete, by [[Whitehead's theorem]], so that $p^* f$ is an equivalence. So in an $(\infty,1)$-topos with enough points all $\infty$-connected morphisms are equivalences. \end{proof} \hypertarget{nonexamples}{}\subsection*{{Non-examples}}\label{nonexamples} \hypertarget{goodwillie_jet_toposes}{}\subsubsection*{{Goodwillie $n$-jet toposes}}\label{goodwillie_jet_toposes} For $n \gt 1$ the [[Goodwillie n-jet (∞,1)-toposes]] are generically far from being hypercomplete. \hypertarget{models}{}\subsection*{{Models}}\label{models} \hypertarget{ModelCategory}{}\subsubsection*{{In terms of model category theory}}\label{ModelCategory} Hypercomplete [[∞-stack]] [[(∞,1)-topos]]es are precisely those that are [[presentable (∞,1)-category|presented]] by the local [[Andre Joyal|Joyal]]-Jardine [[model structure on simplicial presheaves]], where weak equivalences of simplicial presheaves are those morphisms that induce isomorphisms on homotopy sheaves. In these models the fibrant objects are those simplical presheaves that satisfy [[descent]] over all [[hypercover]]s. If the underlying ordinary [[category of sheaves|sheaf]] [[topos]] has [[point of a topos|enough points]], then this are equivalently the morphisms that induce [[stalk]]wise weak equivalences in the standard [[model structure on simplicial sets]]. Contrary to that one can consider local models by [[Bousfield localization of model categories|left Bousfield localization]] of the global [[model structure on simplicial presheaves]] only at [[Cech cover]]s. This yield in general a non-hypercomplete [[(∞,1)-categories of (∞,1)-sheaves]]. \begin{prop} \label{}\hypertarget{}{} For $C$ [[site]], write $[C^{op}, sSet]_{inj,loc}$ for the Joyal-Jardine [[local model structure on simplicial presheaves]] (whose weak equivalence are morphisms that induce isomorphisms on homotopy-sheaves). The $(\infty,1)$-topos that this presents is the [[hypercompletion]] of the [[(∞,1)-category of (∞,1)-sheaves]] on $C$: \begin{displaymath} ([C^{op}, sSet]_{inj,loc})^\circ \simeq \widehat{ Sh_{(\infty,1)}(C)} \,. \end{displaymath} \end{prop} This is [[Higher Topos Theory|HTT, prop. 6.5.2.14]]. \begin{proof} The strategy is to form the localization in a 2-step process, where we first just form the Cech-localization, and then from that the full hypercompletion. For that notice that among the weak equivalences in the Joyal-Jardine [[local model structure on simplicial presheaves]] are in particular the ordinary covering [[sieve]]s $S(\{U_i\}) \hookrightarrow j(U)$ (here $j$ is the [[Yoneda embedding]]) associated with a [[cover]]in family $\{U_i \to U\}$ in the [[site]] $C$: since $C$ is an ordinary category, the simplicial presheaves $S(\{U_i\})$ and $j(U)$ have vanishing presheaves of homotopy groups in positive degree, while they coindide with their $\pi_0$-presheaves. Since the [[sheafification]] of $S(\{U_i\})$ is isomorphic to $j(U)$, by definition, it follows that the same holds for the $\pi_0$-presheaves and trivially for the $\pi_n$-presheaves. So $S(\{U_i\}) \to j(U)$ is a Joyal-Jardine weak equivalence. We will now first localize with respect to these morphisms to obtain the Cech-localization whose fibrant objects are [[(∞,1)-sheaves]]. The point is that on these fibrant objects then, the Joyal-Jardine sheaves of homotopy groups can be seen to coincide with the [[categorical homotopy groups in an (∞,1)-topos|(∞,1)-categorical homotopy sheaves]] in terms of which [[hypercompletion]] is defined. To start with, as discussed at [[(∞,1)-category of (∞,1)-presheaves]] we have that the global model structure presents the $(\infty,1)$-presheaves: \begin{displaymath} ([C^{op}, sSet]_{inj})^\circ \simeq PSh_{(\infty,1)}(C) \,. \end{displaymath} Observe that \begin{enumerate}% \item every simplicially constant object is fibrant in $[C^{op}, sSet]_{inj}$ ; \item hence since every object is cofibrant, the morphism $S(\{U_i\}) \to j(U)$ is in $([C^{op}, sSet]_{inj})^\circ$; \item under the abovee identification it is an [[monomorphism in an (∞,1)-category|(∞,1)-monomorphism]] in $PSh_{(\infty,1)}(C)$ (discuss this bit in more detail\ldots{}). \end{enumerate} Therefore the [[topological localization]] of $PSh_{(\infty,1)}(C)$ at these monomorphisms, i.e. the [[(∞,1)-category of (∞,1)-sheaves]] on $C$ is presented by the [[Bousfield localization of model categories|left Bousfield localization]] $[C^{op}, sSet]_{inj,cov}$ of $[C^{op}, sSet]_{inj}$ at the covering subfunctors $S(\{U_i\}) \to j(U)$. By the above remark, the Joyal-Jardine localization $[C^{op}, sSet]_{proj,loc}$ that we are after is a further localization of this Cech localization : we have the bottom row in the following diagram, and want to see that the top left corner is as indicated: \begin{displaymath} \itexarray{ \widehat{Sh_{(\infty,1)}(C)} & \stackrel{\overset{lex}{\leftarrow}}{\underset{}{\hookrightarrow}} & Sh_{(\infty,1)}(C) & \stackrel{\overset{lex}{\leftarrow}}{\underset{}{\hookrightarrow}} & PSh_{(\infty,1)}(C) \\ \uparrow^{\mathrlap{\simeq}} && \uparrow^{\mathrlap{\simeq}} && \uparrow^{\mathrlap{\simeq}} \\ ([C^{op}, sSet]_{inj,loc})^\circ & \stackrel{\overset{\mathbb{L} Id}{\leftarrow}}{\underset{\mathbb{R}Id}{\to}} & ([C^{op}, sSet]_{inj,cov})^\circ & \stackrel{\overset{\mathbb{L} Id}{\leftarrow}}{\underset{\mathbb{R}Id}{\to}} & ([C^{op}, sSet]_{inj})^\circ } \,. \end{displaymath} Now recall that the [[categorical homotopy groups in an (∞,1)-topos]] of an object $X$ are defined by first forming the [[power]]ing $X^{* \to S^n} : X^{S^n} \to X$ and then paassing to the 0-[[truncated|truncation]] $\tau_{\leq 0} ( X^{S^n} \to X)$ of this object in the [[over quasi-category|over (∞,1)-category]]. By the discussion at we have that this powering operation is on fibrant objects modeled by the powering in the [[sSet]]-[[enriched model category]] $[C^{op}, sSet]_{inj,cov}$. But the powering of [[simplicial presheaves]] by [[simplicial set]] is just objectwise the [[internal hom]] of simplicial sets. In terms of this are defined the objectwise [[simplicial homotopy group]]s and hence the Joyal-Jardine homotopy-presheaves. Furthermore, if $X \in [C^{op}, sSet]_{inj,cov}$ is fibrant, it satisfies [[descent for simplicial presheaves]] at [[Cech cover]]s. Since powering is a [[Quillen bifunctor]], the same is then true for $X^S$, formed in the model category, so $X^S$ is an $\infty$-stack. But that means its 0-[[truncated|truncation]] $\tau_{\leq 0}(X^{S^n})$ is an ordinary [[sheaf]]. (Observe that truncation commutes with localization, as discussed .) In total this shows that \emph{on fibrant objects} $X$ in $[C^{op}, sSet]_{inj,cov}$, the Joyal-Jardine homotopy sheaves coincide with the $(\infty,1)$-categorical homotopy sheaves of the object $X$. It remains to observe that under left [[Bousfield localization of model categories|Bousfield lcoalization]], the new fibrant objects are precisely those old fibrant objects that are also [[local object]]s with respect to the morphisms at which one localizes. With the above this implies that the left Bousfield localization $[C^{op}, sSet]_{inj,cov} \to [C^{op}, sSet]_{inj,loc}$ does model the [[hypercompletion]] $Sh_{(\infty,1)}(C) \to \widehat {Sh_{(\infty,1)}}(C)$. \end{proof} \hypertarget{in_classical_topos_theory}{}\subsubsection*{{In classical topos theory}}\label{in_classical_topos_theory} In classical [[topos theory]] literature frequently [[simplicial object]]s in an ordinary [[topos]] are considered, with acyclic fibrations taken to be those morphisms $Y_\bullet \to X_\bullet$ such that for all [[horn]] inclusions the induced morphism \begin{displaymath} (X^{\Delta[n]} \to X^{\partial \Delta[n]} \times_{Y^{\partial \Delta[n]}} Y^{\Delta[n]}) \end{displaymath} is an [[epimorphism]] in the [[topos]]. See for instance page 17 of \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Classifying spaces and classifying topoi} (LNM 1616) \end{itemize} \begin{quote}% (and it looks like this is the discussion planned for part E of the [[Elephant]]). \end{quote} For [[Grothendieck topos|sheaf toposes]] epimorphism means [[stalk]]-wise epimorphism. Therefore this amounts to using on simplicial sheaves the structure of a [[category of fibrant objects]] as defined in [[BrownAHT]], where acyclic fibrations are the stalkwise acyclic [[Kan fibration]]s. The [[homotopy category]] of this [[homotopical category]] is the same as that of the Joyal-Jardine [[model structure on simplicial presheaves]] in the presence of enough points (since in both cases weak equivalences are the stalkwise weak equivalences), hence is the same as the [[homotopy category of an (infinity,1)-category|homotopy category of the hypercomplete (∞,1)-topos]]. For more discussion of how this classical definition interplays with other definitions see also [[homotopy groups in an (∞,1)-topos]]. \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of hypercompleteness appears as \textbf{$t$-completeness} in \begin{itemize}% \item [[Bertrand Toen]] and [[Gabriele Vezzosi]], \emph{Segal topoi and stacks over Segal categories} , Proceedings of the Program Stacks, Intersection theory and Non-abelian Hodge Theory, MSRI, Berkeley, January-May 2002 (\href{http://arxiv.org/abs/math/0212330}{arxiv:math/0212330}). \end{itemize} The notion of hypercomplete $(\infty,1)$-toposes is the topic of section 6.5 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects hypercomplete (∞,1)-topos]] \end{document}