\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{hyperdoctrine} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{classes_of_hyperdoctrines}{Classes of hyperdoctrines}\dotfill \pageref*{classes_of_hyperdoctrines} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{related_notions}{Related notions}\dotfill \pageref*{related_notions} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of a \emph{hyperdoctrine} is essentially an axiomatization of the collection of [[slice category|slices]] of a [[locally cartesian closed category]] (or something similar): a [[category]] $T$ together with a functorial assignment of ``slice-like''-categories to each of its objects, satisfying some conditions. In its use in [[mathematical logic]] (``categorical logic'' (\hyperlink{Lawvere69}{Lawvere 69})) a hyperdoctrine is thought of (under [[categorical semantics]] of [[logic]]/[[type theory]]) as a collection of [[contexts]] together with the operations of [[context extension]]/[[substitution]] and [[quantifier|quantification]] on the categories of [[propositions]] or [[types]] in each context. Therefore specifying the structure of a hyperdoctrine over a given [[category]] is a way of equipping that with a given kind of [[logic]]. Specifically, a hyperdoctrine on a category $T$ for a given notion of logic $L$ is a [[functor]] \begin{displaymath} P \colon T^{op} \to \mathbf{C} \end{displaymath} to some [[2-category]] (or even [[higher category]]) $\mathbf{C}$, whose objects are categories whose [[internal logic]] corresponds to $L$. Thus, each object $A$ of $T$ is assigned an ``$L$-logic'' (the internal logic of $P(A)$). In the most classical case, $L$ is [[propositional logic]], and $\mathbf{C}$ is a 2-category of [[posets]] (e.g. [[lattices]], [[Heyting algebras]], or [[frames]]). A hyperdoctrine is then an incarnation of [[first-order logic|first-order]] [[predicate logic]]. A canonical class of examples of this case is where $P$ sends $A \in T$ to the [[poset of subobjects]] $Sub_T(A)$ of $A$. The predicate logic we obtain in this way is the usual sort of [[internal logic]] of $T$. We generally require also that for every morphism $f \colon A \to B$ the morphism $P(f)$ has both a [[left adjoint]] as well as a [[right adjoint]], typically required to satisfy [[Frobenius reciprocity]] and the [[Beck-Chevalley condition]]. These adjoints are regarded as the action of [[quantifiers]] along $f$. Thus, a hyperdoctrine can also be regarded as a way of ``adding quantifiers'' to a given kind of logic. More precisely, one thinks of \begin{itemize}% \item $T$ as a category of [[types]] or rather [[contexts]]; \item $P$ as assigning \begin{itemize}% \item to each context $X \in T$ the [[lattice]] of [[propositions]] in this context; \item to each morphism $f \colon X \to Y$ in $T$ the operation of ``substitution of variables'' / ``extension of contexts'' for propositions $P(Y) \to P(X)$; \end{itemize} \item the left adjoint to $P(f)$ gives the application of the [[existential quantifier]]; \item the right adjoint to $P(f)$ gives the application of the [[universal quantifier]] (see there for the interpretation of quantifiers in terms of adjoints). \item The Beck-Chevalley condition ensures that quantification interacts with substitution of variables as expected \item Frobenius reciprocity expresses the derivation rules. \end{itemize} So, in particular, a hyperdoctrine is a kind of [[indexed category]] or [[Grothendieck fibration|fibered category]]. The general concept of hyperdoctrines does for [[predicate logic]] precisely what [[Lindenbaum-Tarski algebras]] do for [[propositional logic]], positioning the [[categorical semantics|categorical formulation]] of [[logic]] as a natural extension of the algebraicization of logic. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \begin{theorem} \label{}\hypertarget{}{} The [[functors]] \begin{itemize}% \item $Cont$, that form a [[category of contexts]] of a [[first-order logic|first-order theory]]; \item $Lang$ that forms the [[internal language]] of a [[hyperdoctrine]] \end{itemize} constitute an [[equivalence of categories]] \begin{displaymath} FirstOrderTheories \stackrel{\overset{Lang}{\leftarrow}}{\underset{Cont}{\to}} Hyperdoctrines \,. \end{displaymath} \end{theorem} This is due to (\hyperlink{SeelyA}{Seely, 1984a}). For more details see \emph{[[relation between type theory and category theory]]}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{classes_of_hyperdoctrines}{}\subsubsection*{{Classes of hyperdoctrines}}\label{classes_of_hyperdoctrines} \begin{itemize}% \item [[first-order hyperdoctrine]] \item [[modal hyperdoctrine]] \item [[coherent hyperdoctrine]] \item [[Boolean hyperdoctrine]] \item [[linear hyperdoctrine]] \end{itemize} \hypertarget{special_cases}{}\subsubsection*{{Special cases}}\label{special_cases} \begin{itemize}% \item $T$ = the category of contexts, $P(X)$ is the category of formulas. ``Given any theory (several sorted, intuitionistic or [[first-order hyperdoctrine|classical]]) \ldots{}'' \item $T$ = the category [[Set]] of [[small sets]], $P(X) = 2^X =$ the [[power set]] functor, assigning the [[poset]] of all propositional functions (``or one may take suitable `homotopy classes' of deductions''). \item $T$ = the category of small sets, $P(X) = Set^X$ \ldots{} ``This hyperdoctrine may be viewed as a kind of set-theoretical surrogate of proof theory'' \item ``honest proof theory would presumably yield a hyperdoctrine with nontrivial $P(X)$, but a syntactically presented one''. \item $T$ = [[Cat]], the category of small categories, $P(B) = 2^B$ \item $T$ = [[Cat]] the category of small categories, $P(B) = Set^B$ \item $T$ = [[Grpd]] the category of small groupoids, $P(B) = Set^B$ \end{itemize} \hypertarget{related_notions}{}\subsection*{{Related notions}}\label{related_notions} \begin{itemize}% \item [[comprehension]] \item [[tripos]] \item [[modal hyperdoctrine]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion was introduced in \begin{itemize}% \item [[Bill Lawvere]], \emph{Adjointness in Foundations}, (\href{http://www.emis.de/journals/TAC/reprints/articles/16/tr16abs.html}{TAC}), Dialectica 23 (1969), 281-296 \end{itemize} and further developed in \begin{itemize}% \item [[Bill Lawvere]], \emph{[[Equality in hyperdoctrines and comprehension schema as an adjoint functor]]}, Proceedings of the AMS Symposium on Pure Mathematics XVII (1970), 1-14. (\href{https://ncatlab.org/nlab/files/LawvereComprehension.pdf}{pdf}) \item [[R. A. G. Seely]], \emph{Hyperdoctrines, natural deduction, and the Beck condition}, Zeitschrift f\"u{}r math. Logik und Grundlagen der Math., Band 29, 505-542 (1983). (\href{http://www.math.mcgill.ca/~rags/ZML/ZML.PDF}{pdf}) \end{itemize} Surveys and reviews include \begin{itemize}% \item [[Anders Kock]], [[Gonzalo Reyes]], \emph{Doctrines in categorical logic}, in J. Barwise (ed.) \emph{Handbook of Mathematical Logic} (North Holland, Amsterdam, 1977) 283-313 \item [[Peter Dybjer]], \emph{(What I know about) the history of the identity type} (2006) (\href{http://www.cse.chalmers.se/~peterd/papers/historyidentitytype.pdf}{pdf slides}) \end{itemize} A [[string diagram]] calculus for monoidal hyperdoctrines is discussed in \begin{itemize}% \item Geraldine Brady, [[Todd Trimble]], \emph{[[A string diagram calculus for predicate logic]]} \end{itemize} [[!redirects hyperdoctrines]] \end{document}