\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{hyperring} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{hyperfield_extension_of_field_with_one_element}{Hyperfield extension of field with one element}\dotfill \pageref*{hyperfield_extension_of_field_with_one_element} \linebreak \noindent\hyperlink{the_signature_hyperfield_}{The signature hyperfield $\mathbf{S}$}\dotfill \pageref*{the_signature_hyperfield_} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{hyperring} is like a [[ring]] not with an underlying [[abelian group]] but an underlying [[canonical hypergroup]]. It is a [[hypermonoid]] with additional ring-like [[stuff, structure, property|structure and properties]]. This means that in a hyperring $R$ addition is a multi-valued operation. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{hyperring} is a non-empty [[set]] $R$ equipped with a hyper-addition $+ : R\times R \to P^*(R)$ (where $P^*(R)$ is the set of non-empty subsets) and a multiplication $\cdot : R \times R \to R$ and with elements $0,1 \in R$ such that \begin{enumerate}% \item $(R,+)$ is a [[canonical hypergroup]]; \item $(R,\cdot)$ is a [[monoid]] with identity element $1$; \item $\forall r,s \in R : r(s+t) = r s + r t$ and $(s + t) r = s r + t r$; \item $\forall r \in R : r \cdot 0 = 0 \cdot r = 0$; \item $0 \neq 1$. \end{enumerate} We can form many examples of hyperrings by quotienting a ring $R$ by a subgroup $G \subset R^{\times}$ of its multiplicative group. A \textbf{morphism of hyperrings} is a map $f : R_1 \to R_2$ such that \begin{enumerate}% \item $\forall a,b \in R_1 : f(a + b) \subset f(a) + f(b)$; \item $\forall a,b\in R_1 : f(a \cdot b) = f(a) \cdot f(b)$. \end{enumerate} A \textbf{hyperfield} is a hyperring for which $(R - \{0\}, \cdot)$ is a [[group]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{hyperfield_extension_of_field_with_one_element}{}\subsubsection*{{Hyperfield extension of field with one element}}\label{hyperfield_extension_of_field_with_one_element} The \textbf{hyperfield extension of the [[field with one element]]} is \begin{displaymath} \mathbf{K} := (\{0,1\}, +, \cdot) \end{displaymath} with additive neutral element $0$ and the hyper-addition rule \begin{displaymath} 1 + 1 = \{0,1\} \,. \end{displaymath} This is to be thought of as the hyperring of [[integer]]s modulo the relation ``is 0 or not 0'': think of $0 \in \mathbf{K}$ as being the integer 0 and of $1 \in \mathbf{K}$ as being \emph{any} non-zero integer, then the addition rule says that 0 plus any non-zero integer is non-zero, and that the sum of a non-zero integer with another non-zero integer is either zero or non-zero. \hypertarget{the_signature_hyperfield_}{}\subsubsection*{{The signature hyperfield $\mathbf{S}$}}\label{the_signature_hyperfield_} Let $\mathbf{S} = \{0,1,-1\}$ be the hyperfield with multiplication induced from $\mathbb{Z}$ and with addition given by 0 being the additive unit and the laws \begin{itemize}% \item $1+1 = \{1\}$; \item $-1 + -1 = \{-1\}$ \item $1 + -1 = \{-1, 0, 1\}$. \end{itemize} This we may think of as being the hyperring of [[integer]]s modulo the relation ``is positive or negative or 0'': think of $1$ as being any positive integer, $0$ as being the integer $0$ and $-1$ as being any negative integer. Then the hyper-addition law above encodes how the signature of integers behaves under addition. \textbf{Proposition} To each element, $\phi$, of $Hom(\mathbb{Z}[X], \mathbf{S})$ there corresponds an extended real number, $Re(\phi) \in [-\infty, \infty]$ given as a Dedekind cut. This is a surjective mapping. The inverse image of each real algebraic number contains three elements, while that of a nonalgebraic number is a singleton. For real algebraic $\alpha$, the three homomorphisms from $\mathbb{Z}[X]$ to $\mathbf{S}$ are \begin{displaymath} P(T) \mapsto \underset{\epsilon \to 0+} {lim} sign P(\alpha + t \epsilon), t \in \{-1, 0, 1\}. \end{displaymath} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[hypergroup]] \item [[canonical hypergroup]] \item [[hypermonoid]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of hyperring and hyperfield is due to Marc Krasner: \begin{itemize}% \item M. Krasner, \emph{Approximation des corps valu\'e{}s complets de caract\'e{}ristique $p\neq 0$ par ceux de caract\'e{}ristique 0} , pp.126-201 in \emph{Colloque d' Alg\'e{}bre Sup\'e{}rieure (Bruxelles), 1956} , Ceuterick Louvain 1957. \end{itemize} Another early reference is \begin{itemize}% \item D. Stratigopoulos, \emph{Hyperanneaux non commutatifs: Hyperanneaux, hypercorps, hypermodules, hyperespaces vectoriels et leurs propri\'e{}t\'e{}s \'e{}l\'e{}mentaires} (French) C. R. Acad. Sci. Paris S\'e{}r. A-B 269 (1969) A489--A492. \end{itemize} Modern applications in connection to the [[field with one element]] are discussed in \begin{itemize}% \item [[Alain Connes]], [[Caterina Consani]], \emph{The hyperring of ad\`e{}le classes} (\href{http://arxiv.org/abs/1001.4260}{arXiv:1001.4260}) \item [[Alain Connes]], [[Caterina Consani]], \emph{From monoids to hyperstructures: in search of an absolute arithmetic} (\href{http://arxiv.org/abs/1006.4810}{arXiv:1006.4810}) \end{itemize} An overview is in \begin{itemize}% \item Jaiung Jun, \emph{Algebraic Geometry over Hyperrings} , arXiv:1512.04837 (2015). (\href{http://arxiv.org/abs/1512.04837}{abstract}) \end{itemize} [[!redirects hyperring]] [[!redirects hyperrings]] [[!redirects hyper-ring]] [[!redirects hyper-rings]] [[!redirects hyperfield]] [[!redirects hyperfields]] [[!redirects hyper-field]] [[!redirects hyper-fields]] \end{document}