\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{idempotent complete (infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{idempotents}{}\paragraph*{{Idempotents}}\label{idempotents} [[!include idempotents - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{coherent_vs_incoherent_idempotents}{Coherent vs incoherent idempotents}\dotfill \pageref*{coherent_vs_incoherent_idempotents} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An ordinary [[category]] is \emph{[[idempotent complete category|idempotent complete]]}, aka \emph{[[Karoubi envelope|Karoubi complete]]} or \emph{[[Cauchy completion|Cauchy complete]]} , if every [[idempotent]] splits. Since the splitting of an idempotent is a limit \emph{or} colimit of that idempotent, any category with [[finitely complete category|all finite limits]] or [[finitely cocomplete category|all finite colimits]] is idempotent complete. In an [[(∞,1)-category]] the idea is the same, except that the notion of \emph{idempotent} is more complicated. Instead of just requiring that $e\circ e = e$, we need an [[equivalence]] $e\circ e \simeq e$, together with higher coherence data saying that, for instance, the two derived equivalences $e\circ e\circ e \simeq e$ are equivalent, and so on up. In particular, \emph{being idempotent} is no longer a [[stuff, structure, property|property]] of a morphism, but \emph{structure} on it. It is still true that a splitting of an idempotent in an $(\infty,1)$-category is a limit or colimit of that idempotent (now regarded as a diagram with all its higher coherence data), but this limit is no longer a finite limit; thus an $(\infty,1)$-category can have all finite limits without being idempotent-complete. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Let $Idem^+$ be the [[nerve]] of the [[walking structure|free 1-category containing a]] [[retraction]], with $e:X\to X$ the idempotent, $r:X\to Y$ the retraction, and $i:Y\to X$ the section (and $e = i r$ and $r i = 1_Y$). Let $Idem$ be the similar nerve of the free 1-category containing an idempotent, which is the full sub-simplicial set of $Idem^+$ spanned by the object $X$. Let $Ret$ be the image in $Idem^+$ of the 2-simplex $\Delta^2 \to Idem^+$ exhibiting the composite $r i = 1_Y$; thus $Ret$ is also the quotient of $\Delta^2$ that collapses the 1-face to a point. \end{defn} (\hyperlink{Lurie}{Lurie, 4.4.5.2 p.304}) \begin{defn} \label{}\hypertarget{}{} Let C be an $\infty$-category, incarnated as a [[quasi-category]]. \begin{enumerate}% \item An \textbf{idempotent morphism} in C is a map of simplicial sets $Idem \to C$. We will refer to $Fun(Idem, C)$ as the \textbf{$(\infty,1)$-category of idempotents} in $C$. \item A \textbf{weak retraction diagram} in $C$ is a [[homomorphism]] of [[simplicial sets]] $Ret \to C$. We refer to $Fun(Ret, C)$ as the \textbf{$(\infty,1)$-category of weak retraction diagrams} in $C$. \item A \textbf{strong retraction diagram} in $C$ is a map of simplicial sets $Idem^+ \to C$. We will refer to $Fun(Idem+, C)$ as the \textbf{$(\infty,1)$-category of strong retraction diagrams} in $C$. \end{enumerate} \end{defn} (\hyperlink{Lurie}{Lurie, 4.4.5.4 p.304}) \begin{defn} \label{}\hypertarget{}{} An idempotent $F \colon Idem \to C$ is \textbf{effective} if it extends to a map $Idem^+ \to C$. \end{defn} (\hyperlink{Lurie}{Lurie, above corollary 4.4.5.14}) \begin{prop} \label{}\hypertarget{}{} An idempotent diagram $F \colon Idem \to C$ is effective precisely if it admits an [[(∞,1)-limit]], equivalently if it admits an [[(∞,1)-colimit]]. \end{prop} By (\hyperlink{Lurie}{Lurie, lemma 4.3.2.13}). \begin{defn} \label{}\hypertarget{}{} $C$ is called an \textbf{idempotent complete $(\infty,1)$} if every idempotent is effective. \end{defn} (\hyperlink{Lurie}{Lurie, above corollary 4.4.5.14}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The following properties generalize those of idempotent-complete 1-categories. \begin{theorem} \label{}\hypertarget{}{} A [[small (∞,1)-category]] is idempotent-complete if and only if it is [[accessible (∞,1)-category|accessible]]. \end{theorem} This is [[Higher Topos Theory|HTT, 5.4.3.6]]. \begin{theorem} \label{}\hypertarget{}{} For $C$ a [[small (∞,1)-category]] and $\kappa$ a [[regular cardinal]], the [[(∞,1)-Yoneda embedding]] $C \to C' \hookrightarrow Ind_\kappa(C)$ with $C'$ the full subcategory on $\kappa$-[[compact object]]s exhibits $C'$ as the idempotent completion of $C$. \end{theorem} This is [[Higher Topos Theory|HTT, lemma 5.4.2.4]]. \hypertarget{coherent_vs_incoherent_idempotents}{}\subsection*{{Coherent vs incoherent idempotents}}\label{coherent_vs_incoherent_idempotents} We may also ask how idempotent-completeness of $C$ is related to that of its [[homotopy category]] $h C$. An idempotent in $h C$ is an ``incoherent idempotent'' in $C$, i.e. a map $e:X\to X$ such that $e \sim e^2$, but without any higher coherence conditions. In this case we have: \begin{theorem} \label{}\hypertarget{}{} \textbf{([[Higher Algebra|HA]] Lemma 1.2.4.6)} If $C$ is [[stable (infinity,1)-category|stable]], then $C$ is idempotent-complete (i.e. every coherent idempotent is effective) if and only if $h C$ is (as a 1-category). \end{theorem} However, if $C$ is not stable, this is false. The following counterexample in [[?Gpd]] is constructed in Warning 1.2.4.8 of [[Higher Algebra|HA]]. Let $\lambda : G \to G$ be an injective but non-bijective group homomorphism such that $\lambda$ and $\lambda^2$ are conjugate. (One such is obtained by letting $G$ be the group of endpoint-fixing homeomorphisms of $[0,1]$, with $\lambda(g)$ acting as a scaled version of $g$ on $[0,\frac 1 2]$ and the identity on $[\frac 1 2,1]$. Then $\lambda(g) \circ h = h \circ \lambda^2(g)$ for any $h$ such that $h(t) = 2t$ for $t \in [0,\frac 1 4]$.) Then $B\lambda : B G \to B G$ is homotopic to $B\lambda^2$, hence idempotent in the homotopy category. If it could be lifted to a coherent idempotent, then the colimit of the diagram \begin{displaymath} B G \xrightarrow{B \lambda} B G \xrightarrow{B \lambda} BG \to \cdots \end{displaymath} would be its splitting, and hence the map $B G \to \colim (B G\xrightarrow{B \lambda} B G \to\cdots)$ would have a [[section]]. Passing to fundamental groups, $G \to \colim (G\xrightarrow{\lambda} G \to\cdots)$ would also have a section; but this is impossible as $\lambda$ is injective but not surjective. However, we do have the following: \begin{theorem} \label{}\hypertarget{}{} \textbf{([[Higher Algebra|HA]] Lemma 7.3.5.14)} A morphism $e$ in an $(\infty,1)$-category $C$ is idempotent (i.e. $e:\Delta^1 \to C$ extends to $Idem$) if and only if there is a homotopy $h : e \sim e^2$ such that $h\circ 1 \sim 1\circ h$. \end{theorem} In other words, an incoherent idempotent can be fully coherentified as soon as it admits one additional coherence datum. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Karoubi envelope]] \item [[Cauchy completion]] \item \href{noncommutative+motive#AsUniversalAditiveInvariant}{noncommutative motives -- as universal additive invariants} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section 4.4.5 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} Formalization in [[homotopy type theory]]: \begin{itemize}% \item [[Mike Shulman]], \emph{Idempotents in intensional type theory}, \href{https://arxiv.org/abs/1507.03634}{arXiv:1507.03634}, \href{http://homotopytypetheory.org/2014/12/08/splitting-idempotents/}{blog post} \end{itemize} [[!redirects idempotent complete (∞,1)-category]] [[!redirects idempotent-complete (infinity,1)-category]] [[!redirects idempotent-complete (∞,1)-category]] [[!redirects idempotent-complete quasi-category]] [[!redirects idempotent-complete quasi-categories]] [[!redirects idempotent-completion of an (∞,1)-category]] [[!redirects idempotent-completion of an (infinity,1)-category]] [[!redirects idempotent complete (infinity,1)-categories]] \end{document}