\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{identity among the relations} \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} We consider a presentation, $\mathcal{P} = (X : R)$, of a group $G$. We thus have a short exact sequence, \begin{displaymath} 1\to N \to F \to G \to 1, \end{displaymath} where $F = F(X)$, the free group on the set $X$, $R$ is a subset of $F$ and $N = N(R)$ is the normal closure in $F$ of the set $R$. The group, $F$, acts on $N$ by conjugation: ${}^u c = u c u^{-1}$, $c\in N$, $u \in F$, and the elements of $N$ are words in the conjugates of the elements of $R$: \begin{displaymath} c = {}^{u_1}(r_1^{\varepsilon_1}){}^{u_2}(r_2^{\varepsilon_2})\ldots {}^{u_n}(r_n^{\varepsilon_n}), \end{displaymath} often says such elements are \emph{consequences} of $R$. Heuristically, an \textbf{identity among the relations} of $\mathcal{P}$ is such an element, $c$, which equals 1. The problem of what this actually \emph{means} is analogous to that of working with a relation, since, for example, in the presentation, $( a : a^3)$, of $C_3$, the cyclic group of order 3, if $a$ is thought of as being an element of $C_3$, then $a^3 = 1$! Doesn't that say the presentation is $( a : 1)$? Why is this then different from the situation with the `presentation', $( a : a = 1)$? To get around that mess, the free group on the generators, $F(X)$, was introduced and, of course, in $F(\{a\})$, $a^3$ is not 1. The relation is thus thought of as being a piece of data that is giving the instruction to rewrite that element to 1. An analogous free algebraic device, namely a [[free crossed module]] on the presentation can be introduced to handle the identities. Before giving the formal definition we will look at some examples. \hypertarget{example_proper_powers}{}\subsection*{{Example (Proper powers)}}\label{example_proper_powers} Suppose $r\in R$, but it is a power of some element $s\in F$, i.e., $r = s^m$. Of course, $r s = s r$ and \begin{displaymath} {}^s r r^{-1} = 1 \end{displaymath} so ${}^s r . r^{-1}$ is an identity. In fact, there will be a unique $z\in F$ with $r = z^q$, $q$ maximal with this property. This $z$ is called the \emph{root of} $r$ and if $q \gt 1$, $r$ is called a \emph{proper power}. \hypertarget{example_standard_presentation_of_}{}\subsection*{{Example (Standard presentation of $S_3$)}}\label{example_standard_presentation_of_} Here we take up the example from [[Cayley graph]]: Consider one of the standard presentations of $S_3$, \begin{displaymath} (a,b : a^3, b^2, (ab)^2). \end{displaymath} Write $r = a^3$, $s = b^2$, $t = (ab)^2$. Here the presentation leads to $F= F(a,b)$, free of rank 2, and $N(R) \subset F$, so it must be free as well, by the [[Nielsen-Schreier theorem]]. Its rank will be 7, given by the Schreier index formula or, geometrically, it will be the fundamental group of the Cayley quiver, also called the [[Cayley graph]], of the presentation. This group is free on generators corresponding to edges outside a maximal tree. The set of normal generators of $N(R)$ has 3 elements; $N(R)$ is free on 7 elements (corresponding to the edges not in the tree), yet it is specified as consisting of products of conjugates of $r$, $s$ and $t$, and there are infinitely many of these conjugates. Clearly there must be some \emph{slight} redundancy, so there must be some identities among the relations! Note that the Cayley graph is [[planar graph|planar]]. A path around the first triangle, $1 \to a \to a^2$, corresponds to the relation $r$; each other region corresponds to a conjugate of one of $r$, $s$ or $t$. (It may help in what follows to think of the graph being embedded on a 2-sphere, so `outer' and `outside' mean `round the back face'.) Consider a loop around a region. Pick a path to a start vertex of the loop, a path starting at 1. For instance the path that leaves 1 and goes along edges labelled $a$, $b$ and then goes around $a a a$ before returning by $b^{-1} a^{-1}$ gives $a b r b^{-1} a^{-1}$. Now the path around the outside can be written as a product of paths around the inner parts of the graph, e.g. $(a b a b) b^{-1} a^{-1} b^{-1} (b b) (b^{-1}a^{-1} b^{-1} a^{-1}) \ldots$ and so on, thus $r$ can be written in a non-trivial way as a product of conjugates of $r$, $s$ and $t$. (An explicit identity constructed like this is given in the paper by Brown and Huebschmann (see below).) \hypertarget{example_free_abelian_group_}{}\subsection*{{Example (Free Abelian group $\mathbb{Z}^3$)}}\label{example_free_abelian_group_} In a presentation of the free Abelian group on 3 generators, one would expect the commutators, $[x,y]$, $[x,z]$ and $[y,z]$. There is a well-known identity, that expands out to give an identity among these relations (again see Brown-Huebschman (below), p.154, or Loday, (again below) for a complete treatment.) In a bit more detail, look at this as a \emph{presented group}, \begin{displaymath} G=\mathbb{Z}^{3}=\langle x,y,z\mid [y,z],[z,x],[x,y]\rangle \end{displaymath} then label the relators $r_x= [y,z]$, $r_y=[z,x]$, $r_z= [x,y]$. There is an identity: \begin{displaymath} [[x,y],{}^y z].[[y,z],{}^z x].[[z,x],{}^x y] =1 \end{displaymath} which is easily checked to hold just by expanding it out and cancelling terms. This is one of the (many) forms of the well-known identity known variously as the \emph{Hall-Witt identity}, the \emph{Jacobi-Hall-Witt identity}, the \emph{Jacobi identity}, and various variants of these. There is thus a word, \begin{displaymath} [r_z,{}^y z].[r_x,{}^z x].[r_y,{}^x y] \end{displaymath} which can be written out as a product of conjugates of the three relations, $r_x$, $r_y$ and $r_z$, and which evaluates to 1 when considered as an element of $F(x,y,z)$. It is thus another case of an \emph{identity among the relations} for this presented group. Note the [[Cayley quiver]] of this presentation is infinite. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We can now formally define the module of identities of a presentation, $\mathcal{P} = (X : R)$. We first form the [[free crossed module]] on the mapping $R\to F(X)$, which we will denote by $\partial : C(\mathcal{P}) \to F(X)$. \begin{defn} \label{module}\hypertarget{module}{} The \emph{module of identities} , $\kappa(\mathcal{P})$, of $\mathcal{P}$ is $Ker\, \partial$. \end{defn} An \emph{identity among the relations} of $\mathcal{P}$ is then an element of $\kappa(\mathcal{P})$. By construction, the group presented by $\mathcal{P}$ is $G \cong F(X)/Im\, \partial$, where $Im \,\partial$ is just the normal closure of the set, $R$, of relations and we know that $Ker\, \partial$ is a $G$-module. In fact we have an exact sequence: \begin{displaymath} 0\to \kappa(\mathcal{P}) \to C(\mathcal{P}) \xrightarrow{\partial} F(X)\to G\to 1. \end{displaymath} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Cayley graph]] \item [[homotopical syzygy]] \item [[homological syzygy]] \end{itemize} \hypertarget{references}{}\subsection*{{References:}}\label{references} \begin{itemize}% \item [[R. Brown]] and [[J. Huebschmann]], \emph{Identities among relations}, in R.Brown and T.L.Thickstun, eds., Low Dimensional Topology, London Math. Soc Lecture Notes, Cambridge University Press, (1982). \item [[M. Kapranov]] and [[M. Saito]], 1999, \emph{Hidden Stasheff polytopes in algebraic K-theory and in the space of Morse functions}, in \emph{Higher homotopy structure in topology and mathematical physics} (Poughkeepsie, N.Y. 1996), volume 227 of Contemporary Mathematics, 191 – 225, AMS \item [[J.-L. Loday]], 2000, \emph{Homotopical Syzygies}, in \emph{Une dégustation topologique: Homotopy theory in the Swiss Alps}, volume 265 of Contemporary Mathematics, 99 – 127, AMS. \end{itemize} [[!redirects identities among relations]] [[!redirects identities among the relations]] \end{document}