\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{image} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{basic_properties}{Basic properties}\dotfill \pageref*{basic_properties} \linebreak \noindent\hyperlink{relation_to_factorization_systems}{Relation to factorization systems}\dotfill \pageref*{relation_to_factorization_systems} \linebreak \noindent\hyperlink{AsEqualizer}{Construction via limits}\dotfill \pageref*{AsEqualizer} \linebreak \noindent\hyperlink{comparison_of_regular_images_and_coimages}{Comparison of regular images and coimages}\dotfill \pageref*{comparison_of_regular_images_and_coimages} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{InfImage}{In $(\infty,1)$-category theory}\dotfill \pageref*{InfImage} \linebreak \noindent\hyperlink{InfImageExamples}{Examples}\dotfill \pageref*{InfImageExamples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{image} of a [[function]] $f\colon A\to B$ between [[sets]] is the [[subset]] of $B$ consisting of all those elements $b\in B$ that are of the form $f(a)$ for some $a\in A$. This notion can be generalized from [[Set]] to other categories, as follows. To discuss images in a category $C$, we must first fix a notion of [[subobject]] or [[embedding]] in $C$. (Sometimes we want these to be the [[monomorphisms]], but sometimes we want the [[regular monomorphisms]] instead.) Then [[generalized the|the]] \textbf{image} of a [[morphism]] $f\colon A\to B$ in $C$ is a universal factorization of $f$ into a composite $A \to im(f) \to B$ such that $im(f)\to B$ is a subobject, of the specified sort. Note that in this generality, a given morphism may or may not have an image, although if it does, it is unique up to isomorphism by universality. In many cases, images can be constructed out of [[limits]] and [[colimits]] in the ambient category. In particular, in a [[regular category]], images (relative to all monomorphisms) can be constructed as the [[quotient object]] of a [[kernel pair]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a [[category]], let $M\subset Mono(C)$ be a subclass of the monomorphisms in $C$, and let $f: c \to d$ be a [[morphism]] in $C$. The ($M$)-\textbf{image} of $f$ is the smallest $M$-[[subobject]] $im(f) \hookrightarrow d$ through which $f$ factors (if it exists). The factorizing morphism $c \to im(f)$ is sometimes called the \textbf{corestriction} of $f$ (or \textbf{coastriction}, see \href{http://mathoverflow.net/questions/29911/whats-the-notation-for-a-function-restricted-to-a-subset-of-the-codomain/65813#65813}{mathoverflow}): In other words, it is a factorization $c \overset{e}{\to} im(f) \overset{m}{\to} d$ of $f$ (i.e. $f = m e$) such that $m\in M$, and given any other factorization $f = m' e'$ with $m'\in M$, we have $m \subseteq m'$ as subobjects of $C$ (i.e. $m$ factors through $m'$, $m = m' k$ for some $k$). Such a factorization is unique up to unique isomorphism, if it exists. (For instance if $M$ is the class of [[regular monomorphisms]], then the $M$-image is the \emph{[[regular image]]}. See \hyperlink{AsEqualizer}{below} for more.) This can be phrased equivalently as follows. Let $C/d$ be the [[slice category]] of $C$ over $d$, and let $M/d$ be its full subcategory whose objects are $M$-morphisms into $d$. If all images exist in $C$, then taking the image of a map $f: c \to d$ provides a [[left adjoint]] \begin{displaymath} C/d \to M/d \end{displaymath} to the inclusion $M/d \hookrightarrow C/d$. More generally, an image of a single morphism $f\colon c\to d$ is a [[universal arrow]] from $f$ to this inclusion. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In [[Set]], for $M=$ monomorphisms = [[injections]], this reproduces the ordinary notion of image. \item More generally in any [[topos]] the [[(epi,mono) factorization system]] gives the factorization through the image $f \colon A \overset{epi}{\to} im(f) \overset{mono}{\to} B$. \item Similarly in an [[abelian category]] (\href{abelian+category#AbelianCategory}{by definition}) [[(epi,mono) factorization system|(epi,mono) factorization]] gives factorization through the image. \item In algebraic categories such as [[Grp]], for $M=$ monomorphisms, this also reproduces the ordinary notions of image. \item In [[Top]], for $M=$ [[subspace]] inclusions, the $M$-image is the set-theoretic image topologized as a [[subspace]] of the [[target|codomain]]. On the other hand, for $M=$ injective continuous maps, the $M$-image is the set-theoretic image topologized as a [[quotient space]] of the [[source|domain]]. For more basic details see at \emph{[[Introduction to Topology -- 1]]} \hyperlink{ImageFactorization}{here}. \item A [[regular category]] can be defined as a [[finitely complete category]] in which all images exist for $M=$ monomorphisms, and such images are moreover stable under [[pullback]]. In particular, this includes any [[topos]]. \item In [[Cat]] (considered as a [[1-category]]), the image of a [[functor]] $F\colon A\to B$ is the smallest [[subcategory]] of $B$ which contains images through $F$ of all morphisms in $A$. Note that some of the morphisms in the image may not be images of any morphism in $A$; all morphisms in the image of $F$ are [[composite|compositions]] in $B$ of $B$-composable sequences of images of morphisms in $A$, but these themselves do not necessarily form $A$-composable sequences of morphisms in $A$. Usually it is better to treat $Cat$ as a 2-category, in which case one can use a more 2-categorical notion of image. See, for instance, [[full image]], [[essential image]], and [[replete image]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{basic_properties}{}\subsubsection*{{Basic properties}}\label{basic_properties} \begin{prop} \label{PreservationOfUnionsAndIntersectionsOfSets}\hypertarget{PreservationOfUnionsAndIntersectionsOfSets}{} \textbf{([[images preserve unions]] but not in general [[intersections]])} Let $f \colon X \longrightarrow Y$ be a [[function]] between [[sets]]. Let $\{S_i \subset X\}_{i \in I}$ be a set of [[subsets]] of $X$. Then. \begin{enumerate}% \item $im_f\left( \underset{i \in I}{\cup} S_i\right) = \left(\underset{i \in I}{\cup} im_f(S_i)\right)$ \item $im_f\left( \underset{i \in I}{\cap} S_i\right) \subset \left(\underset{i \in I}{\cap} im_f(S_i)\right)$ \end{enumerate} The inclusion in the second item is in general proper. If $f$ is an [[injective function]] and $I$ is [[inhabited set|inhabited]] then this is a [[bijection]]: \begin{itemize}% \item $(f\,\text{injective}) \Rightarrow \left(im_f\left( \underset{i \in I}{\cap} S_i\right) = \left(\underset{i \in I}{\cap} im_f(S_i)\right)\right)$ \end{itemize} \end{prop} For details see at \emph{[[interactions of images and pre-images with unions and intersections]]}. \hypertarget{relation_to_factorization_systems}{}\subsubsection*{{Relation to factorization systems}}\label{relation_to_factorization_systems} Suppose that $M$ is closed under composition, and that $f = m e$ is an image factorization relative to $M$. Then $e$ has the property that if $e = n g$ for some $n\in M$, then $n$ is an isomorphism --- for then we would have $f = (m n) g$ and so by universality of images, $m$ would factor through $m n$. In particular, if $M$ is the class of all monomorphisms and $C$ has [[equalizers]], then $e$ is an [[extremal epimorphism]]. If $C$ has [[pullbacks]] and $M$ is closed under pullbacks, then we can say more: $e$ is [[orthogonality|orthogonal]] to $M$. For if \begin{displaymath} \itexarray{a & \overset{h}{\to} & b\\ ^e\downarrow && \downarrow^n\\ c & \underset{k}{\to} & d} \end{displaymath} is a commutative square with $n\in M$, then the pullback $k^*n$ is an $M$-morphism through which $e$ factors. Hence $k^*n$ must be an isomorphism, and so the square admits a diagonal filler, which is unique since $n\in M$ is monic. It follows that if all $M$-images exist in $C$, then $M$ is the right class of an [[orthogonal factorization system]], and $M$-images are precisely the factorizations in this OFS. Conversely, it is easy to see that if $(E,M)$ is an OFS on a category $C$, then all $M$-images exist and are given by the factorizations of the OFS. Therefore, to give a notion of image is more or less equivalent to giving an orthogonal factorization system. \textbf{Duality} Note that the notion of factorization system is self-dual. Therefore, if $(E,M)$ is a factorization system and $c \overset{e}{\to} a \overset{m}{\to} d$ is an $(E,M)$-factorization of $f\colon c\to d$, then not only is $m$ the $M$-image of $f$ (the least $M$-subobject through which $f$ factors), but dually $e$ is also the \textbf{$E$-coimage} of $f$, i.e. the greatest $E$-quotient through which $f$ factors. However, see below for additional remarks on the usage of the terms ``image'' and ``coimage.'' \hypertarget{AsEqualizer}{}\subsubsection*{{Construction via limits}}\label{AsEqualizer} Suppose that the category $C$ admits finite [[limits]] and [[colimits]], and that $M=RegMono$ consists of the [[regular monomorphisms]]. Then the $M$-image of a morphism $f : c \to d$ may be constructed as \begin{displaymath} Im f \simeq lim (d \rightrightarrows d \sqcup_c d) \,, \end{displaymath} where $d \sqcup_c d$ denotes the [[pushout]] \begin{displaymath} \itexarray{ c &\stackrel{f}{\to}& d \\ \downarrow^{f} && \downarrow \\ d &\to& d \sqcup_c d } \,. \end{displaymath} In other words, the \textbf{[[regular image]]} is the [[equalizer]] of the [[cokernel pair]]. To see that this is in fact the $RegMono$-image, we first note that it is of course a regular monomorphism by definition, and then invoke the fact that in a category with [[finite limits]] and colimits, a monomorphism is regular if and only if it is the equalizer of its cokernel pair. Dually, the \textbf{regular coimage} of a morphism is the [[coequalizer]] of its [[kernel pair]]. In [[Set]] (and more generally in any [[topos]]) these two constructions coincide, but in general they are distinct. For example, in [[Top]] the regular image is the set-theoretic image topologized as a subspace of the [[target|codomain]], while the regular coimage is the set-theoretic image topologized as a quotient space of the [[source|domain]]. Note that some authors drop the ``regular'' and simply call these constructions the \textbf{image} and \textbf{coimage} respectively. This can be confusing, however, since in many cases (such as in any [[regular category]]) the \emph{regular coimage} coincides with the $M$-image for $M=Mono$ the class of all monomorphisms, which it is also natural to simply call the \emph{image}. \hypertarget{comparison_of_regular_images_and_coimages}{}\subsubsection*{{Comparison of regular images and coimages}}\label{comparison_of_regular_images_and_coimages} Suppose that $M_1$ and $M_2$ are two classes with $M_1\subseteq M_2$. If $f$ has both an $M_1$-image $im_1(f)$ and an $M_2$-image $im_2(f)$, then by universality, the latter must factor through the former. The correspondence between images and factorization systems also extends to pairs; see [[ternary factorization system]]. As a special case of this, we have: \begin{lemma} \label{}\hypertarget{}{} If $C$ has finite limits and colimits, then there is a unique map \begin{displaymath} u : coim f \to im f \end{displaymath} from its regular coimage to its regular image such that \begin{displaymath} f = (c \to coim f \stackrel{u}{\to} im f \to d) \,. \end{displaymath} \end{lemma} \begin{proof} Because $f$ coequalizes $c \times_d c \rightrightarrows c$, a morphism $h$ in \begin{displaymath} \itexarray{ c &\times_d c \rightrightarrows& c &\stackrel{f}{\to}& d &\rightrightarrows& d \sqcup_{c} d \\ && {}^{\;}\downarrow^{epi} &{}^{h}\nearrow& {}^{\;}\uparrow^{mono} \\ && coim f && im f } \end{displaymath} exists uniquely. Because $c \to coim f$ is [[epimorphism|epi]] it follows that $h$ equalizes $d \rightrightarrows d \sqcup_c d$ and hence $u$ in the diagram \begin{displaymath} \itexarray{ c &\times_d c \rightrightarrows& c &\stackrel{f}{\to}& d &\rightrightarrows& d \sqcup_{c} d \\ && {}^{\;}\downarrow^{epi} &{}^{h}\nearrow& {}^{\;}\uparrow^{mono} \\ && coim f &\stackrel{u}{\to}& im f } \end{displaymath} exists uniquely. \end{proof} If this map $u$ is an [[isomorphism]], then $f$ is sometimes called a [[strict morphism]]. In particular, if $C$ has finite limits and colimits and every morphism is a strict morphism, then the regular image and regular coimage factorizations coincide and give an epi-mono factorization system. \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} In [[higher category theory]] there are generalizations of the notion of image, such as these: \begin{itemize}% \item [[essential image]] (of a [[functor]]) \item [[homotopy image]]. \end{itemize} However, it is not clear that either serves as the proper categorification of the notion described above. There are several properties we might want a `higher image' to have. For example, in an $2$-category, we might want isomorphic 1-cells to have equivalent images. In \textbf{Cat}, we might want the image of a functor between discrete categories to be its image as a function. One fruitful direction is to study a [[factorization system in a 2-category]]. \hypertarget{InfImage}{}\subsubsection*{{In $(\infty,1)$-category theory}}\label{InfImage} A \textbf{(regular) $(\infty,1)$-image} of a morphism $f : c \to d$ in an [[(∞,1)-category]] with [[(∞,1)-limit]]s and -colimits should be defined to be the [[(∞,1)-limit]] over the [[Cech nerve|Cech co-nerve]] of $f$: \begin{displaymath} im f := \lim_{\leftarrow} \left( d \rightrightarrows d \coprod_c d \stackrel{\to}{\rightrightarrows} d \coprod_c d \coprod_c d \stackrel{\to}{\stackrel{\to}{\rightrightarrows}} \cdots \right) \,. \end{displaymath} Notice that \begin{itemize}% \item this reduces to the above \hyperlink{AsEqualizer}{equalizer definition} in the case that the ambient $(\infty,1)$-category is just an ordinary category; \item this implies that the inclusion $im f \to d$ is a [[regular monomorphism]] in the $(\infty,1)$-category sense (described \href{http://ncatlab.org/nlab/show/regular+monomorphism#Infty1Version}{here}). \end{itemize} For more see \emph{[[n-image]]}. \hypertarget{InfImageExamples}{}\paragraph*{{Examples}}\label{InfImageExamples} Applied to the $(\infty,1)$-category [[∞Grpd]] this gives a notion of image of [[(∞,1)-functor]]s between [[∞-groupoid]]s and hence a notion of image of [[functor]]s between [[groupoid]]s, [[2-functor]]s between [[2-groupoid]]s, etc. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[preimage]] \item [[coimage]] \item [[inverse image]], [[direct image]] \item [[kernel]], [[cokernel]] \item [[continuous images of compact spaces are compact]] \end{itemize} [[!redirects images]] [[!redirects corestriction]] [[!redirects regular image]] [[!redirects regular coimage]] [[!redirects image factorization]] [[!redirects image factorizations]] \end{document}