\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ind-object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_diagrams}{As diagrams}\dotfill \pageref*{as_diagrams} \linebreak \noindent\hyperlink{as_filtered_colimits_of_representable_presheaves}{As filtered colimits of representable presheaves}\dotfill \pageref*{as_filtered_colimits_of_representable_presheaves} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_category_of_indobjects}{The category of ind-objects}\dotfill \pageref*{the_category_of_indobjects} \linebreak \noindent\hyperlink{recognition_of_indobjects}{Recognition of Ind-objects}\dotfill \pageref*{recognition_of_indobjects} \linebreak \noindent\hyperlink{functoriality}{Functoriality}\dotfill \pageref*{functoriality} \linebreak \noindent\hyperlink{the_case_that__already_admits_filtered_colimits}{The case that $\mathcal{C}$ already admits filtered colimits}\dotfill \pageref*{the_case_that__already_admits_filtered_colimits} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{in_categories}{In $(\infty,1)$-categories}\dotfill \pageref*{in_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \textbf{ind-object} of a [[category]] $\mathcal{C}$ is a \textbf{formal [[filtered colimit]]} of objects of $\mathcal{C}$. Here ``formal'' means that the colimit is taken in the [[category of presheaves]] of $\mathcal{C}$ (the [[free cocompletion]] of $\mathcal{C}$). The category of ind-objects of $\mathcal{C}$ is written $ind$-$\mathcal{C}$ or $Ind(\mathcal{C})$. Here, ``ind'' is short for ``[[inductive system]]'', as in the inductive systems used to define [[directed colimits]], and as contrasted with ``pro'' in the dual notion of [[pro-object]] corresponding to ``projective system''. Recalling the nature of [[filtered colimits]], this means that in particular chains of inclusions \begin{displaymath} c_1 \hookrightarrow c_2 \hookrightarrow c_3 \hookrightarrow c_4 \hookrightarrow \cdots \end{displaymath} of objects in $\mathcal{C}$ are regarded to converge to an object in $Ind(\mathcal{C})$, even if that object does not exist in $\mathcal{C}$ itself. Standard examples where ind-objects are relevant are categories $\mathcal{C}$ whose objects are finite in some sense, such as [[finite sets]] or [[finite dimensional vector spaces]]. Their ind-categories contain then also the infinite versions of these objects as limits of sequences of inclusions of finite objects of ever increasing size. Moreover, ind-categories allow one to handle ``big things in terms of small things'' also in another important sense: many [[large category|large categories]] are actually ([[equivalence of categories|equivalent]] to) ind-categories of [[small category|small categories]]. This means that, while [[large category|large]], they are for all practical purposes controlled by a [[small category]] (see the description of the [[hom-set]] of $Ind(\mathcal{C})$ in terms of that of $\mathcal{C}$ below). Such [[large category|large categories]] equivalent to ind-categories are therefore called [[accessible category|accessible categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are several equivalent ways to define ind-objects. \hypertarget{as_diagrams}{}\subsubsection*{{As diagrams}}\label{as_diagrams} One definition is to define the objects of $ind$-$\mathcal{C}$ to be diagrams $F:D\to \mathcal{C}$ where $D$ is a [[small category|small]] [[filtered category|filtered]] category.\newline The idea is to think of these diagrams as being the placeholder for the [[colimit]] over them (possibly non-existent in $\mathcal{C}$). We identify an ordinary object of $\mathcal{C}$ with the corresponding diagram $1\to \mathcal{C}$. To see what the morphisms should be between $F:D\to \mathcal{C}$ and $G:E\to \mathcal{C}$, we stipulate that \begin{enumerate}% \item The embedding $\mathcal{C}\to ind$-$\mathcal{C}$ should be [[full and faithful functor|full and faithful]], \item each diagram $F:D\to \mathcal{C}$ should be the colimit of itself (considered as a diagram in $ind$-$\mathcal{C}$ via the above embedding), and \item the objects of $\mathcal{C}$ should be [[compact object|compact]] in $ind$-$\mathcal{C}$. \end{enumerate} Thus, we should have \begin{displaymath} \begin{aligned} ind\text{-}\mathcal{C}(F,G) &= ind\text{-}\mathcal{C}(colim_{d\in D} F d, colim_{e\in E} G e)\\ &\cong lim_{d\in D}\; ind\text{-}\mathcal{C}(F d, colim_{e\in E} G e)\\ &\cong lim_{d\in D} colim_{e\in E}\; ind\text{-}\mathcal{C}C(F d, G e)\\ &\cong lim_{d\in D} colim_{e\in E}\; \mathcal{C}(F d, G e) \end{aligned} \end{displaymath} Here \begin{itemize}% \item the first step is by assumption that each object is a suitable colimit; \item the second by the fact that the contravariant Hom sends colimits to limits (see properties of [[colimit]]); \item the third by the assumption that each object is a [[compact object]]; \item the last by the assumption that the embedding is a [[full and faithful functor]]. \end{itemize} So then one \emph{defines} \begin{displaymath} ind\text{-}\mathcal{C}(F,G) \coloneqq lim_{d\in D} colim_{e\in E}\; \mathcal{C}(F d, G e) \,. \end{displaymath} \hypertarget{as_filtered_colimits_of_representable_presheaves}{}\subsubsection*{{As filtered colimits of representable presheaves}}\label{as_filtered_colimits_of_representable_presheaves} Recall the [[co-Yoneda lemma]] that every presheaf $X \in PSh(\mathcal{C})$ is a [[colimit]] over [[representable functor|representable presheaves]]: there is a functor $\alpha : D \to \mathcal{C}$ (with $D$ possibly large) such that \begin{displaymath} X \simeq colim_{d \in D} Y(\alpha(d)) \end{displaymath} (with $Y$ the [[Yoneda embedding]]). \begin{defn} \label{}\hypertarget{}{} Let $Ind(\mathcal{C}) \subset PSh(\mathcal{C})$ be the [[full subcategory]] of the [[presheaf category]] $PSh(\mathcal{C}) = [\mathcal{C}^{op},Set]$ on those [[functors]]/[[presheaves]] which are [[filtered colimits]] of [[representable functor|representables]], i.e. those for which \begin{displaymath} X \simeq colim_{d \in D} Y(\alpha(d)) \end{displaymath} for $D$ some [[filtered category]]. Those for which $D$ may be chosen to be $\mathbb{N}^{\leq}$, i.e. those that arise as [[sequential colimits]], are also called \emph{[[strict ind-objects]]}. \end{defn} \begin{remark} \label{}\hypertarget{}{} The functors $\mathcal{C}^{op}\to Set$ belonging to $Ind(\mathcal{C})$ under this definition --- those which are filtered colimits of representables --- have an equivalent characterization as the [[flat functors]]: those which ``would preserve all finite colimits if $\mathcal{C}$ had them''. In particular, if $\mathcal{C}$ has finite colimits, then $Ind(\mathcal{C})$ consists exactly of the finitely cocontinuous presheaves. For more equivalent characterizations see at \emph{\href{accessible+category#definition}{accessible category -- Definition}}. \end{remark} \begin{remark} \label{}\hypertarget{}{} Given that $[\mathcal{C}^{op},Set]$ is the [[free cocompletion]] of $\mathcal{C}$, $Ind(\mathcal{C})$ defined in this way is its ``free cocompletion under filtered colimits.'' \end{remark} To compare with the first definition, notice that indeed the formula for the [[hom-sets]] is reproduced: Generally we have \begin{displaymath} \begin{aligned} [\mathcal{C}^{op},Set](X,Y) & \simeq [\mathcal{C}^{op}, Set](colim_{d \in D} Y F d, colim_{d' \in D'} Y G d) \\ & \simeq lim_{d \in D} [\mathcal{C}^{op}, Set]( Y F d, colim_{d' \in D'} Y G d) \end{aligned} \end{displaymath} by the fact that the [[hom-functor]] sends [[colimits]] to [[limits]] in its first argument (see \emph{properties} at \emph{[[colimit]]}). By the [[Yoneda lemma]] this is \begin{displaymath} \cdots \simeq lim_{d \in D} (colim_{d' \in D'} Y G d')(F d) \,. \end{displaymath} Using that [[colimits]] in $PSh(\mathcal{C})$ are computed objectwise (see again \emph{properties} at \emph{[[colimit]]}) this is \begin{displaymath} \cdots \simeq lim_{d \in D} colim_{d' \in D'} \mathcal{C}(F d, G d') \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Let [[FinVect]] be the category of [[finite-dimensional vector spaces]] (over some [[field]]). Let $V$ be an infinite-dimensional vector space. Then $V$ can be regarded as an object of $ind-FinVect$ as the colimit $colim_{V' \hookrightarrow V} Y(V')$ over the [[filtered category]] whose objects are inclusions $V' \hookrightarrow V$ of finite dimensional vector spaces $V'$ into $V$ of the representables $Y(V') : FinVect^{op} \to Set$ ($Y$ is the [[Yoneda embedding]]). \item For $\mathcal{C}$ the category of finitely presented objects of some equationally defined structure, $ind\text{-}\mathcal{C}$ is the category of all these structures. \begin{itemize}% \item The category [[Grp]] of [[group]]s is the ind-category of the category of finitely generated groups. \begin{itemize}% \item The category [[Ab]] of [[abelian group]]s is the ind-category of the category of finitely generated abelian groups. \end{itemize} \end{itemize} \item A [[formal scheme]] is an ind-object in [[schemes]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} In the following we write $\underset{\longrightarrow}{\lim}^f$ for the ``formal colimits'' defining ind-objects. I.e. if $\alpha \colon \mathcal{I} \to \mathcal{C}$ is a small [[diagram]] and with $i \colon Ind(\mathcal{C}) \hookrightarrow PSh(\mathcal{C})$ the defining inclusion, then \begin{displaymath} \underset{\longrightarrow}{\lim}^f (\alpha) \;\coloneqq\; \underset{\longrightarrow}{\lim} (i \circ \alpha ) \,. \end{displaymath} \hypertarget{the_category_of_indobjects}{}\subsubsection*{{The category of ind-objects}}\label{the_category_of_indobjects} \begin{prop} \label{}\hypertarget{}{} If $\mathcal{C}$ is a [[locally small category]] then so is $Ind(\mathcal{C})$. \end{prop} \begin{prop} \label{}\hypertarget{}{} $Ind(\mathcal{C})$ admits small [[filtered colimits]] and the defining inclusion $Ind(\mathcal{C}) \hookrightarrow PSh(\mathcal{C})$ commutes with these colimits. \end{prop} (e.g. \hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, theorem 6.1.8}) The following says that morphisms between ind-objects are represented by [[natural transformation]] of the filtered diagrams that represent them, possibly up to restricting these diagrams first along a [[final functor]]. \begin{prop} \label{MorphismsRepresentedByCofilteredSystemsOfMorphisms}\hypertarget{MorphismsRepresentedByCofilteredSystemsOfMorphisms}{} Let \begin{enumerate}% \item $\mathcal{I}_1$ and $\mathcal{I}_2$ be two [[small category|small]] [[filtered categories]]; \item $\alpha_1 \colon \mathcal{I}_1 \longrightarrow \mathcal{C}$ and $\alpha_2 \colon \mathcal{I}_2 \longrightarrow \mathcal{C}$ be two [[functors]]; \item $f \;\colon\; \underset{\longrightarrow}{\lim}^f \alpha_1 \longrightarrow \underset{\longrightarrow}{\lim}^f \alpha_2$ \end{enumerate} a [[morphism]] between their images in $Ind(\mathcal{C})$. Then there exists \begin{enumerate}% \item a small [[filtered category]] $K$ \item [[final functors]] $p_i \colon K \longrightarrow \mathcal{I}_i$ \item a [[natural transformation]] $\phi \;\colon\; \alpha_1 \circ p_1 \longrightarrow \alpha_2 \circ p_2$ \end{enumerate} such that the following [[commuting diagram|diagram commutes]] \begin{displaymath} \itexarray{ \underset{\longrightarrow}{\lim}^f(\alpha_1 \circ p_1) &\overset{\underset{\longrightarrow}{\lim}^f \phi}{\longrightarrow}& \underset{\longrightarrow}{\lim}^f(\alpha_2 \circ p_2) \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ \underset{\longrightarrow}{\lim}^f \alpha_1 &\underset{f}{\longrightarrow}& \underset{\longrightarrow}{\lim}^f \alpha_2 } \,. \end{displaymath} \end{prop} (e.g. \hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, prop. 6.1.13}, \hyperlink{ArtinMazur69}{Artin-Mazur 69, appendix 3, prop. (3.1), corollary (3.2)}) \begin{cor} \label{}\hypertarget{}{} For each $f \colon A_1 \longrightarrow A_2$ a [[morphism]] in $Ind(\mathcal{C})$, then there exists \begin{enumerate}% \item a [[small category|small]] [[filtered category]] $\mathcal{I}$; \item [[functors]] $\alpha_i \;\colon\; \mathcal{I} \to \mathcal{C}$ ($i \in \{1,2\}$); \item a [[natural transformation]] $\phi \colon \alpha_1 \longrightarrow \alpha_2$ \end{enumerate} such that \begin{displaymath} \itexarray{ A_1 &\overset{f}{\longrightarrow}& A_2 \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ \underset{\longrightarrow}{\lim}^f \alpha_1 &\underset{\underset{\longrightarrow}{\lim}^f \phi }{\longrightarrow}& \underset{\longrightarrow}{\lim}^f \alpha_2 } \,. \end{displaymath} \end{cor} (e.g. \hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, corollary 6.1.14}) \begin{prop} \label{}\hypertarget{}{} The canonical inclusion $y \;\colon\; \mathcal{C} \hookrightarrow Ind(\mathcal{C})$ (factoring the [[Yoneda embedding]]) is [[exact functor|right exact]]. \end{prop} (e.g. \hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, corollary 6.1.6}) \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{C}$ have all [[finite limits]] or all [[small limits]]. Then also $Ind(\mathcal{C})$ has all finite or small limits, respectively, and the canonical functor $y \;\colon\; \mathcal{C} \longrightarrow Ind(\mathcal{C})$ preserves these, respectively. \end{prop} (e.g. \hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, corollary 6.1.17}) \begin{prop} \label{}\hypertarget{}{} If $\mathcal{C}$ has [[cokernels]], then so does $Ind(\mathcal{C})$. If $\mathcal{C}$ has [[finite colimit]] [[coproducts]], then $Ind(\mathcal{C})$ has small [[coproducts]]. If $\mathcal{C}$ has all [[finite colimits]], then $Ind(\mathcal{C})$ has all small [[colimits]]. \end{prop} (e.g. \hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, prop. 6.1.18}) \hypertarget{recognition_of_indobjects}{}\subsubsection*{{Recognition of Ind-objects}}\label{recognition_of_indobjects} \begin{prop} \label{}\hypertarget{}{} A [[functor]] $F \colon \mathcal{C}^{op} \to Set$ is in $Ind(\mathcal{C})$ (i.e. is a [[filtered colimit]] of [[representable functor|representables]]) precisely if the [[comma category]] $(Y,const_F)$ (with $Y$ the [[Yoneda embedding]]) is [[filtered category|filtered]] and [[cofinally small category|cofinally small]]. \end{prop} \begin{prop} \label{}\hypertarget{}{} If $\mathcal{C}$ admits finite [[colimits]], then $Ind(\mathcal{C})$ is the [[full subcategory]] of the [[presheaf]] category $PSh(\mathcal{C})$ consisting of those functors $F \colon \mathcal{C}^{op} \to Set$ such that $F$ is [[exact functor|left exact]] and the [[comma category]] $(Y,F)$ (with $Y$ the [[Yoneda embedding]]) is [[cofinally small category|cofinally small]]. \end{prop} \hypertarget{functoriality}{}\subsubsection*{{Functoriality}}\label{functoriality} Ind-cocompletion is functorial -- in fact an underlying 2-functor of a [[lax-idempotent 2-monad]] (KZ-monad). More in detail: \begin{prop} \label{FunctorialityOfInd}\hypertarget{FunctorialityOfInd}{} Let $F \colon \mathcal{C}_1 \longrightarrow \mathcal{C}$ be a [[functor]]. Then there is a unique [[extension]] $Ind(F)$ of this functor to ind-objects, i.e. a [[commuting diagram]] \begin{displaymath} \itexarray{ \mathcal{C}_1 &\overset{F}{\longrightarrow}& \mathcal{C}_2 \\ \downarrow && \downarrow \\ Ind(\mathcal{C}_1) &\underset{Ind(F)}{\longrightarrow}& Ind(\mathcal{C}_2) } \,, \end{displaymath} such that \begin{displaymath} Ind(F)( \underset{\longrightarrow}{\lim}^f \alpha ) \simeq \underset{\longrightarrow}{\lim}^f ( F \circ \alpha ) \,. \end{displaymath} Moreover, \begin{enumerate}% \item this construction respects [[composition]] in that \begin{displaymath} Ind(G \circ F ) \simeq Ind(G) \circ Ind(F) \end{displaymath} \item if $F$ is a [[faithful functor]] or [[fully faithful functor]], then so is $Ind(F)$, respectively. \end{enumerate} \end{prop} (e.g. \hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, prop.6.1.9-6.1.11}) \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{C}_1$ and $\mathcal{C}_2$ be two [[small categories]]. By prop. \ref{FunctorialityOfInd} the two [[projections]] out of their [[product category]] induce a functor of the form \begin{displaymath} Ind(\mathcal{C}_1 \times \mathcal{C}_2) \longrightarrow Ind(\mathcal{C}_1) \times Ind(\mathcal{C}_2) \,. \end{displaymath} This is an [[equivalence of categories]]. \end{prop} (\hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, prop. 6.1.12}) \hypertarget{the_case_that__already_admits_filtered_colimits}{}\subsubsection*{{The case that $\mathcal{C}$ already admits filtered colimits}}\label{the_case_that__already_admits_filtered_colimits} (\hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, chapter 6.3}) \begin{prop} \label{ReflectionToYonedaEmbedding}\hypertarget{ReflectionToYonedaEmbedding}{} Let $\mathcal{C}$ be a [[category]] which has all small [[filtered colimits]]. Then the canonical functor $\mathcal{C} \longrightarrow Ind(\mathcal{C})$ defines a [[reflective subcategory]], i.e. it is a [[fully faithful functor]] with a [[left adjoint]] $L$ \begin{displaymath} \mathcal{C} \underoverset {\underset{}{\longrightarrow}} {\overset{L}{\longleftarrow}} {\bot} Ind(\mathcal{C}) \end{displaymath} which takes formal filtered colimits to actual filtered colimits in $\mathcal{C}$: \begin{displaymath} L \;\colon\; \underset{\longrightarrow}{\lim}^f \alpha \mapsto \underset{\longrightarrow}{\lim} \alpha \end{displaymath} \end{prop} (\hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, prop. 6.3.1}) \begin{prop} \label{JFIsFullyFaithful}\hypertarget{JFIsFullyFaithful}{} Let $F \colon \mathcal{J} \longrightarrow \mathcal{C}$ be a [[functor]] such that \begin{enumerate}% \item $F$ is a [[fully faithful functor]]; \item $\mathcal{C}$ has all small [[filtered colimits]]; \item for every object $J \in \mathcal{J}$ its image $F(J) \in \mathcal{C}$ is [[compact object|compact]]. \end{enumerate} Then the composite \begin{displaymath} Ind(\mathcal{J}) \overset{Ind(F)}{\longrightarrow} Ind(\mathcal{C}) \overset{L}{\longrightarrow} \mathcal{C} \end{displaymath} (with $Ind(F)$ from prop. \ref{FunctorialityOfInd} and $L$ from prop. \ref{ReflectionToYonedaEmbedding}) is a [[fully faithful functor]]. \end{prop} (\hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, prop. 6.3.4}) \begin{prop} \label{}\hypertarget{}{} If $\mathcal{C}$ is a [[category]] such that \begin{enumerate}% \item every object of $\mathcal{C}$ is a [[filtered colimit]] of [[compact objects]]; \item $\mathcal{C}$ has all small [[filtered colimits]] \end{enumerate} then the composite functor \begin{displaymath} Ind(\mathcal{C}_{cpt}) \longrightarrow Ind(\mathcal{C}) \overset{L}{\longrightarrow} \mathcal{C} \end{displaymath} (from prop. \ref{JFIsFullyFaithful}, where $\mathcal{C}_{cpt} \hookrightarrow \mathcal{C}$ is the [[full subcategory]] of [[compact objects]]) is an [[equivalence of categories]]. \end{prop} (\hyperlink{KashiwaraSchapira06}{KashiwaraSchapira 06, corollary 6.3.5}) \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item One important use of categories of ind-objects is in [[abelian sheaf]]-theory: for every [[small category|small]] [[abelian category]] $\mathcal{C}$ the category $ind\text{-}\mathcal{C}$ is a [[Grothendieck category]] and hence a good coefficient object for [[abelian sheaf cohomology]]. \end{itemize} \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} \hypertarget{in_categories}{}\subsubsection*{{In $(\infty,1)$-categories}}\label{in_categories} There is a notion of [[ind-object in an (∞,1)-category]]. With regard to the third of the properties listed above, notice that the [[comma category]] $(Y,const_F)$ is the [[category of elements]] of $F$, i.e. the [[pullback]] of the [[generalized universal bundle|universal Set-bundle]] $U : Set_* \to Set$ along $F : \mathcal{C}^{op} \to Set$. This means that the [[stuff, structure, property|forgetful functor]] $(Y,const_F) \to \mathcal{C}$ is the fibration classified by $F$. This is the starting point for the definition at [[ind-object in an (∞,1)-category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{ind-object} / [[ind-object in an (∞,1)-category]] \item [[pro-object]] / [[pro-object in an (∞,1)-category]] \item [[ind-pro-object]] \item [[flat functor]] \item [[KZ-monad]] \item [[continuous category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Ind-categories were introduced in \begin{itemize}% \item [[Alexander Grothendieck]], [[Jean-Louis Verdier]] in [[SGA4]] Exp. 1 \href{http://sage.math.washington.edu/home/wstein/www/home/craigcitro/sga4/Grothendieck/SGA4/sga41.pdf}{pdf file} \end{itemize} and the dual notion of [[pro-object]] in \begin{itemize}% \item A. Grothendieck, \emph{Techniques de d\'e{}scente et th\'e{}or\`e{}mes d'existence en g\'e{}om\'e{}trie alg\'e{}brique, II: le th\'e{}or\`e{}me d'existence en th\'e{}orie formelle des modules}, Seminaire Bourbaki \textbf{195}, 1960, \href{http://archive.numdam.org/ARCHIVE/SB/SB_1958-1960__5_/SB_1958-1960__5__369_0/SB_1958-1960__5__369_0.pdf}{(pdf)}. \end{itemize} Ind-objects are discussed in \begin{itemize}% \item [[Michael Artin]], [[Barry Mazur]], appendix of \emph{\'E{}tale homotopy theory}, Lecture Notes in Maths. 100, Springer-Verlag, Berlin 1969. \end{itemize} (in their dual guise as [[pro-objects]]) \begin{itemize}% \item [[Masaki Kashiwara]], [[Pierre Schapira]], section 6 of \emph{[[Categories and Sheaves]]} , Grundlehren der mathematischen Wissenschaften 332 (2006). \end{itemize} The relation between the Ind-completion and the ideal completion in order theory is discussed in section 1 of \begin{itemize}% \item [[Peter Johnstone]], [[André Joyal]], \emph{Continuous categories and exponentiable toposes} , JPAA \textbf{25} (1982) pp.255-296. \end{itemize} See also \begin{itemize}% \item [[Peter Johnstone]], section VI.1 of \emph{[[Stone Spaces]]} \end{itemize} They are discussed in relation to generalisations in \begin{itemize}% \item [[Jiří Adámek]], [[Francis Borceux]], [[Stephen Lack]], [[Jiri Rosicky|Ji\'i{} Rosický]], \emph{A classification of accessible categories,} Journal of Pure and Applied Algebra 175:7-30, 2002. \href{http://maths.mq.edu.au/~slack/papers/acc.html}{abstract} \end{itemize} See also the remarks at the beginning of section 5.3 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects ind-objects]] [[!redirects ind object]] [[!redirects ind-completion]] [[!redirects ind-cocompletion]] [[!redirects Ind-objects]] [[!redirects Ind object]] [[!redirects Ind-completion]] [[!redirects Ind-cocompletion]] [[!redirects category of ind-objects]] [[!redirects categories of ind-objects]] [[!redirects category of Ind-objects]] [[!redirects categories of Ind-objects]] \end{document}