\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{indecomposable object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{indecomposable_objects}{}\section*{{Indecomposable objects}}\label{indecomposable_objects} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{lambekscott_indecomposability}{Lambek--Scott indecomposability}\dotfill \pageref*{lambekscott_indecomposability} \linebreak \noindent\hyperlink{irreducible}{Indecomposability vs irreducibility}\dotfill \pageref*{irreducible} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An object $X$ of a category $C$ is \textbf{indecomposable} if it cannot be expressed as a non-trivial [[coproduct]] of objects of $C$. Formally, $X$ is indecomposable if given an isomorphism $X \cong \coprod_i U_i$, there is a unique index $i$ such that $X \cong U_i$ and $U_j \cong 0$ for all $j \neq i$, where $0$ is an [[initial object]]. The requirement that $i$ be unique keeps the initial object itself from being indecomposable; this is analogous to being [[too simple to be simple]]. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} If $C$ is an [[extensive category]], meaning that coproducts in $C$ are [[disjoint coproduct|disjoint]] and pullback-stable, then we have \begin{uprop} An object $X$ of $C$ is indecomposable if and only if it is [[connected object|connected]], that is if the hom functor $\hom(X,-)$ preserves coproducts. \end{uprop} \begin{proof} If $X$ is connected, then a morphism $k \colon X \to \coprod_i U_i$ factors uniquely as $\iota_i \circ \bar k \colon X \to U_i \to \coprod_i U_i$, where $\iota_i$ is the coprojection. Suppose $k$ is invertible -- then the composite $k^{-1} \iota_i \bar k \colon X \to U_i \to \coprod_i U_i \to X$ is the identity. Consider \begin{displaymath} U_i \overset{\iota_i}{\to} \coprod_i U_i \overset{k^{-1}}{\to} X \overset{k}{\to} \coprod_i U_i \end{displaymath} Of course $k \circ k^{-1} = 1$, while $k = \iota_i \bar k$ as before. So $\iota_i \circ \bar k k^{-1} \iota_i = \iota_i$. But because $C$ is extensive the coprojections are monic, so $\bar k k^{-1} \iota_i = 1$. Thus $\bar k$ is an isomorphism $X \cong U_i$, with inverse $k^{-1} \iota_i$. Because coproducts in $C$ are disjoint, the pullback of distinct coprojections is $0$, and because $U_i \cong X \cong \coprod_i U_i$, the pullback of $\iota_i$ along $\iota_j$ is an isomorphism, showing that $U_j \cong 0$ for $j \neq i$. Conversely, assume $X$ is indecomposable. Given $k \colon X \to \coprod_i U_i$, we are to produce a unique $X \to U_i$ as above. Because $C$ is extensive, $k$ is isomorphic (in the slice category $C/\coprod_i U_i$) to $\coprod_i k_i \colon \coprod_i X_i \to \coprod_i U_i$ for some family $\{k_i \colon X_i \to U_i\}$. But $X \cong \coprod_i X_i$ gives us by indecomposability of $X$ an isomorphism $X \cong X_i$ for a unique $i$, which composed with $k_i$ gives a morphism $X \cong X_i \to U_i$. Because $\coprod_i k_i = [\iota_i k_i]_i$ (where the right-hand side is the copairing of the family $\{\iota_i k_i\}_i$), and because the $X_j \cong 0$ for $j\neq i$, the composite $\iota_i k_i \colon X \cong X_i \to U_i \to \coprod_i U_i$ is equal to $k$. Hence $X$ is connected. \end{proof} If $C$ is a [[presheaf category]] $[S^{op}, Set]$ (thus a [[Grothendieck topos]] and so \emph{a fortiori} (infinitary) extensive), then it is easy to see that the [[representable functors]] $S(-,s)$ are connected and so indecomposable. Conversely, the objects of $[S^{op}, Set]$ that are indecomposable as well as [[projective object|projective]] are precisely the objects of the [[Cauchy completion]] of $S$. \hypertarget{lambekscott_indecomposability}{}\subsection*{{Lambek--Scott indecomposability}}\label{lambekscott_indecomposability} [[Introduction to Higher-Order Categorical Logic|Lambek \& Scott]] give a different definition of indecomposability. Generalizing their definition slightly, we may say that an object $X$ is \textbf{indecomposable} (in the sense of Lambek--Scott) if any [[jointly epimorphic family]] $\{U_i \to X\}_i$ of arrows into $X$ contains at least one [[epimorphism]] $U_i \twoheadrightarrow X$, and moreover the unique arrow $0 \to X$ is not epic (this to ensure that $0$ is not indecomposable). If the epi $U_i \twoheadrightarrow X$ is required to be [[regular epimorphism|regular]], then in an \emph{[[extensive category]]} the Lambek--Scott definition implies that given above: if $k \colon X \cong \coprod_i U_i$, then the family $\{k^{-1} \iota_i \colon U_i \to \coprod_i U_i \cong X\}_i$ is jointly epic, so it contains a regular epi $\iota_i k^{-1}$. But extensivity implies that $\iota_i$ is a [[monomorphism]], so the regular epi $\iota_i k^{-1}$ is also monic and hence an isomorphism. The converse does not hold in general, but it does hold if $X$ is [[projective object|projective]]. See \href{http://mathoverflow.net/questions/35855/indecomposable-objects-in-a-category}{this MathOverflow thread} for a discussion. \hypertarget{irreducible}{}\subsection*{{Indecomposability vs irreducibility}}\label{irreducible} An [[indecomposable representation]] is precisely an indecomposable object in an appropriate category $Rep$ of [[representations]], as one would expect. In contrast, an [[irreducible representation]] is precisely a [[simple object]] in $Rep$. Every irreducible representation is indecomposable, but the converse holds only in special situations (such as the category of finite-dimensional linear representations of a real semisimple Lie group). However, one level [[decategorified]], an [[irreducible element]] of a [[poset]] $P$ is precisely an indecomposable object of $P$ when thought of as a [[thin category]]. In contrast, a simple object is analogous to an [[atomic element]], although they are not the same thing. (One might say that atomic = $0$-simple.) Again, every atomic element is irreducible, but the converse holds only in special situations (such as the power set of any set). The bottom line is that `irreducible' and `indecomposable' sometimes mean the same thing but sometimes don't, and `irreducible' doesn't even mean the same thing across different fields. [[!redirects indecomposable object]] [[!redirects indecomposable objects]] \end{document}