\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{indexed category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,2)$-Topos theory}}\label{topos_theory} [[!include (infinity,2)-topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{self_indexing}{Self indexing}\dotfill \pageref*{self_indexing} \linebreak \noindent\hyperlink{base_change}{Base change}\dotfill \pageref*{base_change} \linebreak \noindent\hyperlink{indexed_category_of_a_functor}{Indexed category of a functor}\dotfill \pageref*{indexed_category_of_a_functor} \linebreak \noindent\hyperlink{indexed_category_of_a_topos_over_a_base_topos}{Indexed category of a topos over a base topos}\dotfill \pageref*{indexed_category_of_a_topos_over_a_base_topos} \linebreak \noindent\hyperlink{hyperdoctrine}{Hyperdoctrine}\dotfill \pageref*{hyperdoctrine} \linebreak \noindent\hyperlink{indexed_monoidal_category}{Indexed monoidal category}\dotfill \pageref*{indexed_monoidal_category} \linebreak \noindent\hyperlink{indexed_category}{Indexed $(\infty, 1)$-category}\dotfill \pageref*{indexed_category} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{extensions_of_adjunctions_to_indexed_categories}{Extensions of adjunctions to indexed categories}\dotfill \pageref*{extensions_of_adjunctions_to_indexed_categories} \linebreak \noindent\hyperlink{WellPoweredness}{Well-powered indexed categories}\dotfill \pageref*{WellPoweredness} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{indexed category} is a [[2-presheaf]]. When doing [[category theory]] relative to a [[base topos]] $\mathcal{S}$ (or other more general sort of [[category]]), the objects of $\mathcal{S}$ are thought of as replacements for [[sets]]. Since often in category theory we need to speak of ``a set-indexed family of objects'' of some category, we need a corresponding notion in ``category theory over $\mathcal{S}$.'' An \textbf{$\mathcal{S}$-indexed category} is a [[category]] $\mathbb{C}$ together with, for every [[object]] $X\in \mathcal{S}$, a notion of ``$X$-indexed family of objects of $\mathbb{C}$.'' \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{S}$ be a [[category]]. \begin{defn} \label{}\hypertarget{}{} An \textbf{$\mathcal{S}$-indexed category} $C$ is a [[pseudofunctor]] \begin{displaymath} \mathbb{C} : \mathcal{S}^{op}\to Cat \end{displaymath} from the [[opposite category]] of $\mathcal{S}$ to the [[2-category]] [[Cat]] of categories. Under the [[Grothendieck construction]] [[equivalence of categories|equivalence]] this is equivalently a [[fibered category]] \begin{displaymath} \itexarray{ \tilde \mathbb{C} \\ \downarrow \\ \mathcal{S} } \end{displaymath} over $\mathcal{S}$. Similarly, an $\mathcal{S}$-[[indexed functor]] $\mathbb{C} \to \mathbb{D}$ is a [[pseudonatural transformation]] of pseudofunctors, and an indexed natural transformation is a [[modification]]. This defines the [[2-category]] $\mathcal{S} IndCat \coloneqq [\mathcal{S}^{op}, Cat]$ of $\mathcal{S}$-indexed categories. \end{defn} This appears for instance as (\hyperlink{Johnstone}{Johnstone, def. B1.2.1}). One may also call $\mathbb{C}$ a [[prestack]] in categories over $\mathcal{S}$. Traditionally one writes the image of an object $X \in \mathcal{S}$ under $\mathbb{C}$ as $\mathbb{C}^X$ and calls it \emph{the category of $X$-indexed families of objects of $\mathbb{C}$}. Similarly, one writes the image of a [[morphism]] $u\colon X\to Y$ as $u^*\colon \mathbb{C}^Y\to \mathbb{C}^X$. If $\mathcal{S}$ has a [[terminal object]] $*$ we think of $\mathbb{C}^*$ as the \textbf{underlying ordinary category} of the $\mathcal{S}$-indexed category $\mathbb{C}$. Part of the theory of indexed categories is about when and how to extend structures on $\mathbb{C}^*$ to all of $\mathbb{C}$. A morphism of $S$-indexed categories is an [[indexed functor]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{self_indexing}{}\subsubsection*{{Self indexing}}\label{self_indexing} \begin{example} \label{CanonicalSelfIndexing}\hypertarget{CanonicalSelfIndexing}{} \textbf{(canonical self-indexing)} If $\mathcal{S}$ has [[pullbacks]], then its [[codomain fibration]] is an $\mathcal{S}$-indexed category denoted $\mathbb{S}$. This assigns to an object $I$ the corresponding [[over-category]] \begin{displaymath} \mathbb{S}^I \coloneqq \mathcal{S}/I \end{displaymath} and to a morphism $f : I \to J$ the functor $f^*$ that sends every $s \to I$ to its [[pullback]] $f^*$ along $f$. \end{example} This indexed category represents $\mathcal{S}$ itself (or rather its [[codomain fibration]]) in the world of $\mathcal{S}$-indexed categories. \hypertarget{base_change}{}\subsubsection*{{Base change}}\label{base_change} \begin{example} \label{BaseChange}\hypertarget{BaseChange}{} \textbf{(change of base)} If $F\colon \mathcal{S}\to \mathcal{T}$ is a [[functor]] and $\mathbb{C}$ is a $\mathcal{T}$-indexed category, then we have an $\mathcal{S}$-indexed category $F^*\mathbb{C}$ defined by \begin{itemize}% \item $(F^*\mathbb{C})^I = \mathbb{C}^{F(I)}$ for every object $I \in \mathcal{S}$; \item and $x^* = F(x)^*$ for every morphism $x : I \to J$ in $\mathcal{S}$. \end{itemize} \end{example} \hypertarget{indexed_category_of_a_functor}{}\subsubsection*{{Indexed category of a functor}}\label{indexed_category_of_a_functor} Combining these previous examples we get \begin{example} \label{CartesianFunctorIndexing}\hypertarget{CartesianFunctorIndexing}{} For $F : \mathcal{S} \to \mathcal{C}$ a functor and $\mathcal{C}$ a [[finitely complete category]], there is the $\mathcal{S}$-indexed category $F^* \mathbb{C}$ given by \begin{itemize}% \item $(F^* \mathbb{C})^I = \mathcal{C}/F(I)$. \end{itemize} If the functor $F$ preserves [[pullback]]s then this induces a morphism $\mathbb{S} \to F^* \mathbb{C}$ of $\mathcal{S}$-indexed categories. \end{example} \hypertarget{indexed_category_of_a_topos_over_a_base_topos}{}\subsubsection*{{Indexed category of a topos over a base topos}}\label{indexed_category_of_a_topos_over_a_base_topos} This situation frequently arises when $\mathcal{S}$ and $\mathcal{C}$ are [[toposes]] and $F \coloneqq f^*$ is the [[inverse image]] part of a [[geometric morphism]]. \begin{displaymath} f : \mathcal{C} \stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}} \mathcal{S} \,. \end{displaymath} In this way, if $\mathcal{S}$ is a topos, then to be thought of as a \emph{[[base topos]]}, then any topos \emph{over} $\mathcal{S}$ (i.e. an object of the [[slice 2-category]] [[Topos]]$/S$) gives rise to a topos \emph{relative to} $\mathcal{S}$, i.e. a ``topos object'' in the 2-category of $\mathcal{S}$-indexed categories, and this operation can be shown to be fully faithful. See [[base topos]] for more on this. Also, via this indexed category, $f$ exhibits $\mathcal{C}$ as a [[2-sheaf]] (see there) over $\mathcal{C}$, with respect to the [[canonical topology]]. \hypertarget{hyperdoctrine}{}\subsubsection*{{Hyperdoctrine}}\label{hyperdoctrine} \begin{itemize}% \item [[hyperdoctrine]] \end{itemize} \hypertarget{indexed_monoidal_category}{}\subsubsection*{{Indexed monoidal category}}\label{indexed_monoidal_category} See also \emph{[[indexed monoidal category]]}, \emph{[[indexed closed monoidal category]]} and \emph{[[dependent linear type theory]]}. \hypertarget{indexed_category}{}\subsubsection*{{Indexed $(\infty, 1)$-category}}\label{indexed_category} See \emph{[[indexed (infinity, 1)-category]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{extensions_of_adjunctions_to_indexed_categories}{}\subsubsection*{{Extensions of adjunctions to indexed categories}}\label{extensions_of_adjunctions_to_indexed_categories} \begin{prop} \label{}\hypertarget{}{} Let \begin{displaymath} (L \dashv R) : \mathcal{C} \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\to}} \mathcal{S} \end{displaymath} be a pair of [[adjoint functor]]s between [[finitely complete categories]]. Then $R$ extends to an $\mathcal{S}$-indexed functor \begin{displaymath} \mathbb{R} : \mathbb{C} \to \mathbb{S} \end{displaymath} where $\mathbb{S}$ is the self-indexing of $\mathcal{S}$ from example \ref{CanonicalSelfIndexing} and $\mathbb{C}$ is the base change indexing of $\mathcal{C}$ from example \ref{CartesianFunctorIndexing}. By the general properties of adjunctions on [[overcategories]] (see there) we get for each $I \in \mathcal{S}$ an adjunction \begin{displaymath} (L/I \dashv R/I) : \mathbb{C}^I = \mathcal{C}/R(I) \to \mathcal{S}/I = \mathbb{S}^I \,. \end{displaymath} Here $\mathbb{R} : I \mapsto R/I$ is always a $\mathcal{S}$-indexed functor $\mathbb{C} \to \mathbb{S}$, and $\mathbb{L} : I \mapsto L/I$ is if $L$ preserves [[pullback]]s (by example \ref{CartesianFunctorIndexing}). If so, we have an $\mathcal{S}$-indexed adjunction \begin{displaymath} (\mathbb{L} \dashv \mathbb{R}) : \mathbb{C} \to \mathbb{S} \end{displaymath} \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, lemma B1.2.3}). \begin{proof} (\ldots{}) \end{proof} \hypertarget{WellPoweredness}{}\subsubsection*{{Well-powered indexed categories}}\label{WellPoweredness} \begin{defn} \label{}\hypertarget{}{} An $\mathcal{S}$-indexed category $\mathbb{C}$ is called \textbf{well-powered} if the [[fibered category]] $\tilde \mathbb{C} \to \mathcal{S}$ corresponding to it under the [[Grothendieck construction]] has the property that the [[forgetful functor]] \begin{displaymath} U : Q(2, \tilde \mathbb{C}) \to Rect(*,\tilde \mathbb{C}) \end{displaymath} has a [[right adjoint]], where $Q(2,\tilde \mathbb{C})$ is the [[full subcategory]] of $Rect(2, \tilde \mathbb{C})$ on vertical [[monomorphism]]s. \end{defn} This appears as (\hyperlink{Johnstone}{Johnstone, example. B1.3.14}). \begin{prop} \label{}\hypertarget{}{} Let $(L \dashv R) : \mathcal{C} \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\to}} \mathcal{S}$ be a pair of [[adjoint functor]]s such that $L$ preserves pullbacks. Then the $\mathcal{S}$-indexed category $\mathbb{C}$ is well powered if $\mathbb{S}$ is. \end{prop} This is (\hyperlink{Johnstone}{Johnstone, prop. B1.3.17}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[indexed functor]] \item [[indexed topos]] \item [[hyperdoctrine]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section B1.2 in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} [[!redirects indexed categories]] \end{document}