\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{inductive family} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{deduction_and_induction}{}\paragraph*{{Deduction and Induction}}\label{deduction_and_induction} [[!include deduction and induction - contents]] \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{induction}{}\paragraph*{{Induction}}\label{induction} [[!include induction - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \noindent\hyperlink{semantics}{Semantics}\dotfill \pageref*{semantics} \linebreak \noindent\hyperlink{higher_categorical_version_homotopy_type_theory}{Higher categorical version/ homotopy type theory}\dotfill \pageref*{higher_categorical_version_homotopy_type_theory} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Inductive families} generalize [[inductive types]]. Instead of defining a single type inductively, one simultaneously defines a whole family of types. An alternative term is ``indexed inductive definition''. A simple example of an inductive family is the type of vectors Vect n indexed by the dimension n. This is defined by two constructors: one for the empty vector of dimension 0, and another for the operation which constructs a vector of dimension n+1 by adding a component to a vector of dimension n. The family of finite types Fin n (indexed by n) can also be defined as an inductive family: the constructor 0 is in any Fin n, and there is a successor operation which constructs an element in Fin (n+1) from an element in Fin n. By the identification of [[propositions as types]], inductive families correspond to inductively defined predicates. For example, the [[identity type]] on a type A can be defined inductively by the reflexivity rule stipulating that a is identical to a for any a : A, that is, identity is the least reflexive relation. The identity family of types in intuitionistic type theory results from the identification of this relation with a family of types. \hypertarget{history}{}\subsection*{{History}}\label{history} The inductively defined identity type was introduced by Martin-L\"o{}f 1973 in his first published paper on Intuitionistic Type Theory. A general schema for inductive families in Intuitionistic Type Theory was defined in \hyperlink{Dybjer91}{Dybjer91}, \hyperlink{Dybjer94}{Dybjer94}. This general schema was based on Martin-L\"o{}f's 1971 schema for inductive definitions in predicate logic. Simultaneously, \hyperlink{CoquandPaulin}{Coquand} and \hyperlink{Paulin93}{Paulin} extended the Calculus of Constructions with a similar schema for inductive families. This resulted in the [[calculus of inductive constructions]]. \hyperlink{Dybjer2000}{Dybjer} and \hyperlink{DybjerSetzer2001}{Dybjer and Setzer} generalized this schema to inductive-recursive definitions, resulting in ``indexed induction-recursion''. \hyperlink{DybjerSetzer}{Dybjer and Setzer} also distinguish two kinds of inductive (and inductive-recursive) families, restricted (due to Coquand) and general ones. The identity type is an example of the latter, but not of the former. Inductive families are part of the axiomatic foundation in [[Coq]] and [[agda]]. Instead, [[Lean]] does not have fix-point expressions, match expressions, or a termination checker in the kernel. Instead, recursive definitions and pattern matching are compiled into eliminators outside of the kernel. \hypertarget{semantics}{}\subsection*{{Semantics}}\label{semantics} Standard inductive types, [[W-types]] can be interpreted in any topos with [[natural numbers object]] (Moerdijk-Palmgren). Gambino and Hyland construct initial algebras for dependent [[polynomial functors]]. \hyperlink{AGHMM}{Indexed containers} are the same as dependent polynomial functors. \hyperlink{AGHMM}{Indexed containers} are claimed to form a foundation for inductive families. \hypertarget{higher_categorical_version_homotopy_type_theory}{}\subsection*{{Higher categorical version/ homotopy type theory}}\label{higher_categorical_version_homotopy_type_theory} \hyperlink{vdBergMoerdijk13}{van den Berg and Moerdijk} show that (standard) W-types can be interpreted in certain [[model categories]]. In [[homotopy type theory]] with [[universes]], one can reduce indexed W-types to W-types. This has been formalized \href{https://github.com/pcapriotti/agda-base/blob/master/src/container/w/core.agda}{here}, \href{https://github.com/SkySkimmer/HoTTClasses/blob/inductives/theories/theory/inductives.v}{here} and \href{https://github.com/jashug/IWTypes}{here}. \hyperlink{Sattler}{Sattler} outlines a generalization of the reduction to [[homotopy type theory]] without the need of universes. \hypertarget{References}{}\subsection*{{References}}\label{References} \begin{itemize}% \item Per Martin-L\"o{}f, \emph{Hauptsatz for the intuitionistic theory of iterated inductive definitions}, 1971, Studies in Logic and the Foundations of Mathematics - Elsevier \item Per Martin-L\"o{}f, \emph{An Intuitionistic Theory of Types: Predicative Part}, 1975, in Logic Colloquium 1973. \item Peter Dybjer, \emph{Inductive Families} Formal aspects of computing 6 (4), 440-465 \href{http://www.cse.chalmers.se/~peterd/papers/Inductive_Families.ps}{PS} \item Peter Dybjer, \emph{Inductive sets and families in Martin-L\"o{}f's type theory and their set-theoretic semantics}, 1991 Logical frameworks 2, 6 \item Peter Dybjer, \emph{A general formulation of simultaneous inductive-recursive definitions in type theory}, 2000, The Journal of Symbolic Logic 65 (02), 525-549 \emph{ Peter Dybjer, Anton Setzer, \emph{Indexed induction-recursion}, 2001 Proof Theory in Computer Science, 93-113} \item Christine Paulin-Mohring, \emph{Inductive definitions in the system Coq rules and properties}, 1993 Typed lambda calculi and applications, 328-345. \item Thierry Coquand, Christine Paulin, \emph{Inductively defined types}, COLOG-88 Volume 417 of the series Lecture Notes in Computer Science pp 50-66 \href{http://link.springer.com/chapter/10.1007%2F3-540-52335-9_47}{Springer} \href{https://books.google.dk/books?id=o_f4UwiZtL0C&pg=PA50}{G books} \item Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris, \emph{Indexed containers} \href{http://strictlypositive.org/indexed-containers.pdf}{PDF} \item Peter Dybjer and Anton Setzer, \emph{Indexed induction-recursion}, Journal of Logic and Algebraic Programming, volume 66, Issue 1, January 2006, Pages 1-49. \href{http://www.cse.chalmers.se/~peterd/papers/Indexed_IR.pdf}{PDF} \item Nicola Gambino and Martin Hyland, Wellfounded Trees and Dependent Polynomial Functors. \href{http://www1.maths.leeds.ac.uk/~pmtng/Research/Papers/gambino-hyland.pdf}{PDF} \item [[Benno van den Berg]], [[Ieke Moerdijk]], \emph{W-types in Homotopy Type Theory} (\href{http://arxiv.org/abs/1307.2765}{arXiv:1307.2765}) \item Christian Sattler, \emph{slides} \href{http://cs.ioc.ee/types15/slides/sattler-slides.pdf}{slides} \end{itemize} [[!redirects inductive families]] [[!redirects indexed inductive definition]] [[!redirects indexed inductive type]] [[!redirects indexed inductive types]] \end{document}