\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{infinitary Lawvere theory} \hypertarget{infinitary_lawvere_theories}{}\section*{{Infinitary Lawvere theories}}\label{infinitary_lawvere_theories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{size_issues}{Size issues}\dotfill \pageref*{size_issues} \linebreak \noindent\hyperlink{algebraic_categories}{Algebraic Categories}\dotfill \pageref*{algebraic_categories} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An infinitary Lawvere theory is a generalisation of a [[Lawvere theory]] to allow infinitary operations. As a motivating example, consider the theory of [[suplattices]], where we have, for every [[cardinal number]] $n$, an operation to take the [[supremum]] of $n$ elements. Size issues can be tricky for infinitary Lawvere theories. Na\"i{}vely, you would expect an infinitary Lawvere theory of [[complete lattices]] too, but there is none, because a smallness condition fails. (This is connected to the nonexistence of [[free complete lattices]].) In accordance with the [[red herring principle]], an infinitary Lawvere theory should not be thought of a special case of a [[Lawvere theory]]. To avoid this, one may call the latter a \emph{finitary} Lawvere theory. There are also many-sorted infinitary Lawvere theories, as well as $\kappa$-ary Lawvere theories for any [[regular cardinal]] $\kappa$. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A \textbf{many-sorted infinitary Lawvere theory} is a [[locally small category]] $\mathcal{D}$ with all small [[products]] and with a small collection $\mathcal{R}$ of objects (called \textbf{sorts}) such that every object is a small product of these sorts. Given a small [[set]] $S$, an \textbf{$S$-sorted infinitary Lawvere theory} is a locally small category $\mathcal{D}$ with all small products and equipped with an $S$-indexed family $\mathcal{R}$ of objects (called \textbf{sorts}) such that every object is a small product of these sorts. (Note that an $S$-indexed family of objects is precisely a [[functor]] to $\mathcal{D}$ from the [[discrete category]] on $S$.) If $(\mathcal{D},\mathcal{R})$ is an $S$-sorted infinitary Lawvere theory, then $\mathcal{D}$ is a many-sorted infinitary Lawvere theory; conversely, any many-sorted infinitary Lawvere theory may be interpreted as an $S$-sorted infinitary Lawvere theory, where $S$ is (the set of isomoprhism classes of) an appropriate family $\mathcal{R}$ and the $S$-indexed family is given by the identity indexing. An \textbf{unsorted infinitary Lawvere theory} is a locally small category $\mathcal{D}$ with all small products and equipped with an object $R$ (so that $(\mathcal{D},R)$ is a [[pointed category]]) such that every object is [[isomorphic]] to $R^n$ for some small cardinal number $n$. An \textbf{infinitary Lawvere theory} is by default an unsorted infinitary Lawvere theory, invoking the [[red herring principle]]. Note that an unsorted infinitary Lawvery theory is the same thing as a $1$-sorted infinitary Lawvere theory. We will give the definitions of further special cases for unsorted infinitary Lawvere theories, but these definitions may also be generalised to the many-sorted case. Given a [[regular cardinal]] $\kappa$, a \textbf{$\kappa$-ary Lawvere theory} is a locally small pointed category $(\mathcal{D},R)$ with all $n$-ary products for $n \lt \kappa$ such that every object is isomorphic to $R^n$ for some $n \lt \kappa$. Every $\kappa$-ary Lawvere theory may be interpreted as an infinitary Lawvere theory by using the free category with all small products on $\mathcal{D}$. More generally, every $\kappa$-ary Lawvere theory may be interpreted as a $\lambda$-ary Lawvere theory if $\kappa \leq \lambda$. A \textbf{bounded infinitary Lawvere theory} is an infinitary Lawvere theory which is (under the interpretation above) [[equivalence of categories|equivalent]] to some $\kappa$-ary Lawvere theory. A \textbf{finitary Lawvere theory} is a locally small pointed category $(\mathcal{D},R)$ with all finitary products such that every object is isomorphic to $R^n$ for some [[natural number]] $n$. A \textbf{[[Lawvere theory]]} is by default a finitary Lawvere theory, invoking the [[red herring principle]]. Note that a finitary Lawvere theory is the same thing as an $\aleph_0$-ary Lawvere theory. \hypertarget{size_issues}{}\subsection*{{Size issues}}\label{size_issues} \href{http://tac.mta.ca/tac/volumes/1995/n9/1-09abs.html}{Freyd and Street (1995)} have shown that a category $\mathcal{D}$ is [[small category|small]] if and only if both $\mathcal{D}$ and the [[functor category]] $[\mathcal{D},Set]$ are locally small. Analogously, it seems that a category $\mathcal{D}$ with products may be given the structure of a many-sorted infinitary Lawvere theory if and only if both $\mathcal{D}$ and $Prod[\mathcal{D},Set]$ (the category of [[product-preserving functor]]s from $\mathcal{D}$ to $Set$, a [[full subcategory]] of $[\mathcal{D},Set]$) are locally small. In both cases, the `only if' part is straightfoward, but we haven't yet proved the `if' part. See \href{http://www.math.ntnu.no/~stacey/Mathforge/nForum/comments.php?DiscussionID=1673}{the n-Forum} for more preliminary results. \hypertarget{algebraic_categories}{}\subsection*{{Algebraic Categories}}\label{algebraic_categories} \begin{ulemma} A multi-sorted infinitary Lawvere theory $\mathcal{D}$ defines a [[monadic category]] over [[Set]] by taking the [[functor category]] consisting of all \textbf{product-preserving} covariant functors from $\mathcal{D}$ in to $Set$. \end{ulemma} Let us write this functor category as $Prod[\mathcal{D},Set]$ and start by showing that it is a [[locally small category]]. \begin{lemma} \label{ProdLocSmall}\hypertarget{ProdLocSmall}{} The category $Prod[\mathcal{D},Set]$ of product-preserving functors and natural transformations is locally small. \end{lemma} \begin{proof} Let $V_1, V_2 \colon \mathcal{D} \to Set$ be two product-preserving covariant functors. From the definition of a multi-sorted infinitary category we see that we may choose a set of sorts, say $S$. Let $D_s \in \mathcal{D}$ be the image of $s \in S$. As $S$ is a set, the product \begin{displaymath} \prod_{s \in S} Set(V_1(D_s), V_2(D_s)) \end{displaymath} is a set. We define a function $[V_1,V_2] \to \prod_{s \in S} Set(V_1(D_s), V_2(D_s))$ by sending a natural transformation $\alpha \colon V_1 \to V_2$ to the product of its values at each $D_s$. That is, \begin{equation} \alpha \mapsto \big(\alpha_{D_s}\big)_{s \in S}. \label{natrans}\end{equation} Let $D \in \mathcal{D}$ be an arbitrary object. From the definition of a multi-sorted infinitary Lawvere theory, there is an isomorphism \begin{displaymath} d \colon D \cong \prod_{s \in S} D_s^{X_s} \end{displaymath} for some sets $X_s$. For each $s \in S$ and $x \in X_s$, there is a projection $p_{s,x} \colon \prod_{s \in S} D_s^{X_s} \to D_s$. As $V_1$ and $V_2$ are product-preserving, we have isomorphisms \begin{displaymath} \cong \prod_{s \in S} V_i(D_s)^{X_s} \end{displaymath} commuting with the projections. Thus for each $s \in S$ and $x \in X_s$, we have the following commutative diagram. Since this holds for all $s \in S$ and $x \in X_s$, by the basic properties of products, there is a unique morphism $\prod_{s \in S} V_1(D_s)^{X_s} \to \prod_{s \in S} V_2(D_s)^{X_s}$ making the diagram commute. This morphism is normally written $\prod_{s \in S} \alpha_{D_s}^{X_s}$. Thus under the isomorphism $d$ above, $\alpha_D$ is taken to $\prod_{s \in S} \alpha_{D_s}^{X_s}$. As this holds for all $D \in \mathcal{D}$, $\alpha$ is completely determined by the $\alpha_{D_s}$, whence the map in \eqref{natrans} is injective. Hence $[V_1,V_2]$ is a subset of a set and thus a set. \end{proof} Now that we have a locally small category, the next step is to show that the forgetful functor has a [[left adjoint]]. Firstly, we need to \emph{define} this forgetful functor. As we are in the most general case, the forgetful functor does not go to $Set$ but to $S$-indexed tuples of sets (or an $S$-[[graded set]]), where $S$ is a choice of set of sorts for $\mathcal{D}$. To make things a little simpler, we assume that the \emph{sorting} functor $S \to \mathcal{D}$ is injective on isomorphism classes so that if $s \ne s'$ in $S$ then $D_s \ncong D_{s'}$ in $\mathcal{D}$. With this assumption, the forgetful functor $Prod[\mathcal{D},Set] \to Set^S$ is the evaluation functor: \begin{displaymath} V \mapsto \big(s \mapsto V(D_s)\big), \qquad \alpha \mapsto \big(s \mapsto \alpha_{D_s}\big). \end{displaymath} \begin{lemma} \label{ProdFree}\hypertarget{ProdFree}{} The forgetful functor $Prod[\mathcal{D},Set] \to Set^S$ has a left adjoint. The left adjoint is given on objects by: \begin{displaymath} \big(s \mapsto X_s\big) \mapsto \mathcal{D}\left(\prod_{s \in S} D_s^{X_s}, -\right) \end{displaymath} \end{lemma} \begin{proof} To ease the notation, let us write $U$ for the forgetful (``underlying set(s)'') functor and $F$ for the free functor. To show the adjunction, we define the unit and counit natural transformations: \begin{displaymath} \eta \colon I \to U F, \qquad \epsilon \colon F U \to I \end{displaymath} Let us consider $\eta$. To define this, we evaluate it at an $S$-graded set, $X$, to get a morphism of graded sets, $\eta_X$. Such a morphism is itself a natural transformation so we evaluate again at $s_0 \in S$. At this point, we have a function (in $Set$) \begin{displaymath} \eta_{X,s_0} \colon X_{s_0} \to \mathcal{D}\left(\prod_{s \in S} D_s^{X_s}, D_{s_0}\right). \end{displaymath} This is simple to describe: it is assignment to $x \in X_{s_0}$ of the projection onto the $x$th $D_{s_0}$-factor: \begin{displaymath} \prod_{s \in S} D_s^{X_s} \to D_{s_0}^{X_{s_0}} \overset{p_x}{\to} D_{s_0}. \end{displaymath} The counit, $\epsilon$, is a little more complicated to describe. Let $V \colon \mathcal{D} \to Set$ be a covariant product-preserving functor. Evaluated at $V$, $\epsilon_V$ is a natural transformation \begin{displaymath} \mathcal{D}\left(\prod_{s \in S} D_s^{V(D_s)}, -\right) \to V \end{displaymath} By the [[Yoneda lemma]], such natural transformations are in bijective correspondence with elements of $V\left(\prod_{s \in S} D_s^{V(D_s)}\right)$. As $V$ is product-preserving, there is a natural isomorphism: \begin{displaymath} V\left(\prod_{s \in S} D_s^{V(D_s)}\right) \cong \prod_{s \in S} V(D_s)^{V(D_s)} \end{displaymath} Now for any set $Z$, there is an obvious element in $Z^Z$: the one that has a $z$ in the $z$th place (which corresponds to the identity function $Z \to Z$). Taking the product of these gives an element in $\prod_{s \in S} V(D_s)^{V(D_s)}$ which we use to define $\epsilon_V$. Let us now prove that these provide the desired adjunction. For one half, we need to consider the composition: \begin{displaymath} F \overset{F \eta}{\to} F U F \overset{\epsilon F}{\to} F \end{displaymath} Let us apply this to a graded set $X = (s \mapsto X_s)$. Then we are looking at a natural transformation from \begin{displaymath} \mathcal{D}\left(\prod_{s \in S} D_s^{X_s}, -\right) \end{displaymath} to itself. By the standard Yoneda argument, it is sufficient to look at the induced function on \begin{displaymath} \mathcal{D}\left(\prod_{s \in S} D_s^{X_s}, \prod_{s \in S} D_s^{X_s}\right) \end{displaymath} and in particular at the image of the identity therein. The first part comes from $F\eta$ at $F(X)$. For each $s_0 \in S$, we have a function $\eta_{X,s_0} \colon X_{s_0} \to \mathcal{D}\left(\prod_{s \in S} D_s^{X_s}, D_{s_0}\right)$ and thus a morphism \begin{equation} \prod_{s \in S} D_s^{\mathcal{D}\left(\prod_{s' \in S} D_{s'}^{X_{s'}},D_s\right)} \to \prod_{s \in S} D_s^{X_s} \label{prod}\end{equation} What this does is the following: it sends component corresponding to the $(s,x)$th projection to the $x$th component and all other components are forgotten. Thus we have a morphism: \begin{displaymath} \mathcal{D}\left( \prod_{s \in S} D_s^{X_s}, \prod_{s \in S} D_s^{X_s}\right) \to \mathcal{D}\left( \prod_{s \in S} D_s^{\mathcal{D}\left(\prod_{s' \in S} D_{s'}^{X_{s'}},D_s\right)}, \prod_{s \in S} D_s^{X_s}\right) \end{displaymath} Under this, the identity morphism goes to the projection morphism described just above. Now we apply $\epsilon F$ to get a morphism: \begin{displaymath} \mathcal{D}\left( \prod_{s \in S} D_s^{\mathcal{D}\left(\prod_{s' \in S} D_{s'}^{X_{s'}},D_s\right)}, \prod_{s \in S} D_s^{X_s}\right) \to \mathcal{D}\left( \prod_{s \in S} D_s^{X_s}, \prod_{s \in S} D_s^{X_s}\right) \end{displaymath} To find this element, we consider the diagram: \begin{displaymath} \itexarray{ \mathcal{D}\left( \prod_{s \in S} D_s^{\mathcal{D}\left(\prod_{s' \in S} D_{s'}^{X_{s'}},D_s\right)}, \prod_{s \in S} D_s^{\mathcal{D}\left(\prod_{s' \in S} D_{s'}^{X_{s'}},D_s\right)}\right) &\overset{\epsilon }{\to}& \mathcal{D}\left( \prod_{s \in S} D_s^{X_s}, \prod_{s \in S} D_s^{\mathcal{D}\left(\prod_{s' \in S} D_{s'}^{X_{s'}},D_s\right)}\right) & \cong & \prod_{s \in S} \mathcal{D}\left( \prod_{s'' \in S} D_{s''}^{X_{s''}}, D_s\right)^{\mathcal{D}\left(\prod_{s' \in S} D_{s'}^{X_{s'}},D_s\right)} \\ \downarrow & & \downarrow & & \downarrow \\ \mathcal{D}\left( \prod_{s \in S} D_s^{\mathcal{D}\left(\prod_{s' \in S} D_{s'}^{X_{s'}},D_s\right)}, \prod_{s \in S} D_s^{X_s}\right) &\overset{\epsilon }{\to}& \mathcal{D}\left( \prod_{s \in S} D_s^{X_s}, \prod_{s \in S} D_s^{X_s}\right) & \cong & \prod_{s \in S}\mathcal{D}\left( \prod_{s'' \in S} D_{s''}^{X_{s''}}, D_s\right)^{X_s} } \end{displaymath} In this diagram, we have left off the subscript on $\epsilon$ for conciseness. The vertical morphism is that induced by the projection from \eqref{prod}. Since we want to have this projection itself in the lower-left, an obvious place to start is with the identity in the top-left. The right-hand square commutes since the vertical maps are projections. Starting with the identity in the top-left, we get the ``Yoneda element'' corresponding to $\epsilon$ in the top-right. That element can be written $(f)_f$. The vertical map selects the $p_{s,x}$th element of the list and puts it in the $(s,x)$th slot. As this is the projection $p_{s,x}$, when moving back to the lower-middle, we obtain the identity morphism as required. Now let us turn to the other half. We need to consider the composition: \begin{displaymath} U \overset{\eta U}{\to} U F U \overset{U \epsilon}{\to} U \end{displaymath} So we need to start with a covariant product-preserving functor $V \colon \mathcal{D} \to Set$ and apply $U$. Then we are looking at a morphism of graded sets from \begin{displaymath} \big(s \mapsto V(D_s)\big) \end{displaymath} to itself. So we pick $s_0 \in S$ and look at the function \begin{displaymath} V(D_{s_0}) \to \mathcal{D}\left(\prod_{s \in S} D_s^{V(D_s)}, D_{s_0}\right) \to V(D_{s_0}). \end{displaymath} We start with the function defined by the unit $\eta$: \begin{displaymath} V(D_{s_0}) \to \mathcal{D}\left(\prod_{s \in S} D_s^{V(D_s)}, D_{s_0}\right) \end{displaymath} which sends $v \in V(D_{s_0})$ to the projection $\prod_{s \in S} D_s^{V(D_s)} \to D_{s_0}$ which corresponds to the $v$th factor of the $s_0$th factor. Now we apply $\epsilon$. This gives us a natural transformation \begin{displaymath} \mathcal{D}\left(\prod_{s \in S} D_s^{V(D_s)}, - \right) \to V(-) \end{displaymath} which we evaluate at $D_{s_0}$ (technically, which we evaluate at $(s \mapsto D_s)$ which we then evaluate at $s_0$). This natural transformation is determined by an element of $V\left(\prod_{s \in S} D_s^{V(D_s)}\right)$ and the element that we want is the image of that element under the function induced by the projection: \begin{displaymath} V\left(\prod_{s \in S} D_s^{V(D_s)}\right) \overset{V(p_{s_0,v})}{\to} V(D_{s_0}) \end{displaymath} As $V$ is product-preserving, we can rearrange this to: \begin{displaymath} \prod_{s \in S} V(D_s)^{V(D_s)} \overset{p_{s_0,v}}{\to} V(D_{s_0}). \end{displaymath} The projection selects the $(s_0,v)$th term of the element in question, and this element is, by definition, $v$. Hence the induced function on $V(D_{s_0})$ is the identity and the adjunction is shown. \end{proof} \end{document}