\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{infinitesimal singular simplicial complex} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{synthetic_differential_geometry}{}\paragraph*{{Synthetic differential geometry}}\label{synthetic_differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_}{in $R^n$}\dotfill \pageref*{in_} \linebreak \noindent\hyperlink{in_smooth_loci}{In smooth loci}\dotfill \pageref*{in_smooth_loci} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_formal_manifolds}{In formal manifolds}\dotfill \pageref*{in_formal_manifolds} \linebreak \noindent\hyperlink{InclusionIntoFinPaths}{Inclusion into the finite singular simplicial complex}\dotfill \pageref*{InclusionIntoFinPaths} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{related_concepts_2}{Related concepts}\dotfill \pageref*{related_concepts_2} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{infinitesimal singular simplicial complex} of a [[space]] $X$ in a [[smooth topos]] $(\mathcal{T},R)$ is the infinitesimal analogue of the singular simplicial complex $X^{\Delta_R^\bullet}$ (see [[interval object]]) that in degree $k$ is the space of $k$-simplices $\Delta^k_R \to X$ in $X$: the infinitesimal singular simplicial complex has in degree $k$ the [[infinitesimal space|infinitesimal]] $k$-simplices in $X$. There are several ways to make the notion of ``infinitesimal $k$-simplex in $X$'' precise. Here we describe a notion promoted by [[Anders Kock]], where an ``infinitesimal $k$-simplex'' in $X$ for $X$ a suitably \emph{locally linear space} , is a $(k+1)$-tuple $(x_0,\cdots, x_k) \in X^{\times^{k+1}}$ of points in $X$ that are pairwise \emph{infinitesimal neighbours} in $X$. One central application of the singular simplicial complex is in the definition of [[differential forms in synthetic differential geometry]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The basic definition applies to spaces of the form $R^n$ and is generalized from there to spaces that ``locally look like'' $R^n$ in one way or other. Let here and in the following $(\mathcal{T},R)$ be a [[smooth topos]]. \hypertarget{in_}{}\subsection*{{in $R^n$}}\label{in_} Write, as usual \begin{displaymath} D(n) := \{(\epsilon_i) \in n | \epsilon_i \epsilon_j = 0\} \hookrightarrow R^n \end{displaymath} for the [[infinitesimal space]] of first order infinitesimal neighbours of the origin of $R^n$, with its canonical inclusion into $R^n$. Two elements $x , y \in R^n$ are called \textbf{first order infinitesimal neighbours}, denoted $x \sim_1 y$, if their difference is in the image of this inclusion. \begin{displaymath} (x \sim_1 y) \Leftrightarrow (\exists \epsilon \in D(n) : (x-y) = \epsilon) \,. \end{displaymath} Write \begin{displaymath} (R^n)^{\Delta^k_{inf}} := \{ (x_0 \in R^n, \cdots, x_k \in R^n) | x_i \sim_1 x_j \} \,. \end{displaymath} This naturally forms a [[simplicial object]] $X^{\Delta_{inf}^{bullet}} : \Delta^{op} \to \mathcal{T}$. This is the infinitesimal simplicial singular complex of $R^n$. A more detailed discussion of this is in the entry [[infinitesimal object]] in the section \href{http://ncatlab.org/nlab/show/infinitesimal+object#SpacOfInfSimpl}{Spaces of infinitesimal simplices}. \hypertarget{in_smooth_loci}{}\subsubsection*{{In smooth loci}}\label{in_smooth_loci} \begin{quote}% \textbf{warning} this section is as such not drawn from the literature, it seems \end{quote} Recall that a [[smooth locus]] in $\mathcal{T}$ is an object $\ell A$ that is the joint [[limit]] over some \begin{displaymath} R^n \stackrel{\stackrel{f \in J}{\to}}{\stackrel{0}{\to}} R \end{displaymath} here $J \subset Hom_{\mathcal{T}}(R^n,R)$ is an ideal. Declare that two [[generalized element]]s $x,y \in \ell A$ are infinitesimal neighbours if their image under the injection \begin{displaymath} \ell A \hookrightarrow R^n \end{displaymath} is a pair of infinitesimal neighbour in $R^n$. Then let \begin{displaymath} (\ell A)^{\Delta^\bullet_{inf}} \hookrightarrow (R^n)^{\Delta_R^\bullet} \end{displaymath} be the sub-simplicial object of infinitesimal neighbours in $R^n$ that are points in $\ell A$. \begin{ulemma} \textbf{(linearity of space of infinitesimal neighbours)} If $p, q \in \ell A$ are infinitesimal neighbours in the [[smooth locus]] $\ell A \subset R^n$, then for all $t \in R$ also the element $p + t(q-p)$ formed by linear combination in $R^n$ is in $\ell A$ and hence is an infinitesimal neighbour of $p$ there. \end{ulemma} \begin{proof} Because by the [[Kock-Lawvere axiom]] valid in the [[smooth topos]] $(\mathcal{T},R)$ we have for all $f : R^n \to R$ \begin{displaymath} 0 = f(q) = f(p + (q-p)) = f(p) + \sum_i (q-p)_i (\partial_i f)(q) = \sum_i (q-p)_i (\partial_i f)(q) \,. \end{displaymath} Therefore also \begin{displaymath} f(p + t(q-q)) = t \sum_i (q-p)_i (\partial_i f)(q) = 0 \,. \end{displaymath} \end{proof} \hypertarget{examples}{}\paragraph*{{Examples}}\label{examples} Consider the circle $S^1$ regarded as the [[smooth locus]] $S^1 = \{(x, y) \in R^2 | x^2 + y^2 = 1\}$. For $a \in S^1 \subset R^2$ an infinitesimal neighbour $(a + \epsilon)$ in $R^2$ is again a point on the circle, and hence an infinitesimal neighbour of $a$ in $S^1$, if \begin{displaymath} a_x^2 + 2 a_x \epsilon_x + a_y^2 + 2 a_y \epsilon_y = 1 \end{displaymath} which, due to $a_x^2 + a_y^2 = 1$ is equivalent to \begin{displaymath} 2 a_x \epsilon_x + 2 a_y \epsilon_y = 0 \,. \end{displaymath} This is solved by $\epsilon$ of the form \begin{displaymath} \epsilon = \delta \left( \itexarray{ a_y \\ - a_x } \right) \end{displaymath} for some fixed $\delta \in D$. \hypertarget{in_formal_manifolds}{}\subsubsection*{{In formal manifolds}}\label{in_formal_manifolds} \begin{quote}% use that each manifold is locally isomorphic to an $R^n$ and that the neighbourhood relation only needs an infinitesimal neighbourhood. Proceed locally as above and then patch. See references below. \end{quote} \hypertarget{InclusionIntoFinPaths}{}\subsection*{{Inclusion into the finite singular simplicial complex}}\label{InclusionIntoFinPaths} The [[lined topos]] $(\mathcal{T}, R)$ also comes canonically for every object $X \in \mathcal{T}$ with the finite singular simplicial complex $\Pi(X) : [n] \mapsto X^{R^n}$ induced from regarding \begin{displaymath} (0_*, 1_*) : {*} \coprod {*} \to R \end{displaymath} as an [[interval object]] (see there for details). \begin{udef} \textbf{(inclusion of infinitesimal into finite simplices)} For $\ell A =: X \hookrightarrow R^n$ a [[smooth locus]] define for all $n \in \mathbb{N}$ a morphism \begin{displaymath} \iota_n : X^{\Delta^k_{inf}} \to X^{\Delta_R^k} = X^{R^k} \end{displaymath} by defining it on [[generalized element]]s as \begin{displaymath} (x^0, \cdots, x^{k}) \mapsto (\vec t \mapsto x^0 + \sum_{i=1}^{k} t_i (x^i - x^{i-1}) ) \,. \end{displaymath} \end{udef} \begin{uprop} The morphisms $\iota_n$ constitute a morphism of [[simplicial object]]s \begin{displaymath} \iota : X^{\Delta^\bullet_{inf}} \hookrightarrow X^{\Delta_R^k} \end{displaymath} in that they respects the face and degenracy maps on each side. \end{uprop} \begin{proof} Straightforward checking: For instance \begin{itemize}% \item The inner face maps $d_i$ on $X^{\Delta_{inf}^{k}}$ omit the $i$th point in the $(k+1)$-tuple of points, while on $X^{\Delta^{k}}$ they act by pullback along $(t_1, \cdots, t_k) \mapsto (t_1, \cdots, t_{i-1}, t_{i}, t_i, t_{i+1}, cdots, t_k)$. That means that in the sum above $t_i$ appears twice to yield \begin{displaymath} \cdots + t_i(x^i - x^{i-1}) + t_i(x^{i+1} - x^i) + \cdots = \cdots + t_i(x^{i+1} - x^{i-1} ) + \cdots \end{displaymath} which indeed corresponds to omission of the $i$th point $x^i$. \end{itemize} \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} The collection of first order infinitesimal neighbours of a space $X$ arranges itself into the [[schreiber:infinitesimal path ∞-groupoid]] $\Pi^{inf}(X)$. Various concepts derive from this one: of [[differential form]]s may be understood in terms of functions on $\Pi(x)^{inf}$. This is described at \begin{itemize}% \item [[differential forms in synthetic differential geometry]]. \end{itemize} A [[deRham space]] is the colimit over a $\Pi^{inf}(X)$. \hypertarget{related_concepts_2}{}\subsection*{{Related concepts}}\label{related_concepts_2} \begin{itemize}% \item [[formal neighbourhood of the diagonal]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} In the language of [[synthetic differential geometry]] the infinitesimal singular complex for ``formal manifolds'' (internally defined manifolds with an infinitesimal thickening to all orderes) is described (with the simplicial structure not made explicit) in section I.18 of \begin{itemize}% \item [[Anders Kock]], \emph{Synthetic Differential Geometry} (\href{http://home.imf.au.dk/kock/sdg99.pdf}{pdf}) \end{itemize} and in \href{http://home.imf.au.dk/kock/SGM-final.pdf#page=89}{section 2.8} of \begin{itemize}% \item Anders Kock, \emph{Synthetic geometry of manifolds} (\href{http://home.imf.au.dk/kock/SGM-final.pdf}{pdf}) \end{itemize} Discussion of this that does make the simplicial structure explicit and relates it to the [[Dold-Kan correspondence]] is in \begin{itemize}% \item Herman Stel, \emph{[[schreiber:master thesis Stel|∞-Stacks and their Function Algebras ? with applications to ∞-Lie theory]]}. \item Herman Stel, \emph{Cosimplicial C-infinity rings and the de Rham complex of Euclidean space} (\href{http://arxiv.org/abs/1310.7407}{arXiv:1310.7407}) \end{itemize} The details of what $X^{\Delta^k_{inf}}$ is like concretely on representables in the [[smooth topos]] $PSh(k-Alg^{op})$ of [[algebraic geometry]], i.e. on [[affine schemes]] is worked out in detail in \begin{itemize}% \item [[Larry Breen]], [[William Messing]], \emph{Combinatorial differential forms} (\href{http://arxiv.org/abs/math/0005087}{pdf}) \end{itemize} The formulas given there should more or less directly carry over to [[smooth topos]]es with [[smooth locus|smooth loci]] by replacing ordinary rings with [[smooth algebra]]s. \begin{quote}% to be discussed \end{quote} As the title suggests, the infinitesimal singular simplicial complex is tightly related to [[differential forms in synthetic differential geometry]]: the deRham complex is the normalized [[Moore complex|Moore cochain complex]] of the [[cosimplicial algebra]] $C^\infty(X^{\Delta^\bullet_{inf}})$ of functions on the spaces of infinitesimal simplices. There is also \begin{itemize}% \item [[Eduardo Dubuc]], [[Anders Kock|Kock]], \emph{On 1-form classifiers} , Communications in Algebra 12 (1984) \item Dubuc, $C^\infty$-schemes, Amer. J. of Math. 103 (1981) \item Kumpera, Spencer, \emph{Lie Equations} , Annals of Math. Studies 73 (1973) \end{itemize} There is also a version of the infinitesimal singular simplicial context in the context of [[nonstandard analysis]]. See \begin{itemize}% \item Zivaljevic, \emph{On a cohomology theory based on hyperfinite sums of microcomplexes} . \end{itemize} [[!redirects infinitesimal path ∞-groupoid in a lined topos]] [[!redirects infinitesimal path ∞-groupoid in a smooth topos]] [[!redirects infinitesimal path infinity-groupoid in a smooth topos]] [[!redirects infinitesimal path infinity-groupoid in a lined topos]] [[!redirects infinitesimal neighbour]] \end{document}