\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{infinity-Lie algebra cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ExplicitDefinition}{Explicit definition}\dotfill \pageref*{ExplicitDefinition} \linebreak \noindent\hyperlink{Topos}{$(\infty,1)$-topos theoretic interpretation}\dotfill \pageref*{Topos} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{transgression_between_invariant_polynomials_and_cocycles_via_chernsimons_elements}{Transgression between invariant polynomials and cocycles via Chern-Simons elements}\dotfill \pageref*{transgression_between_invariant_polynomials_and_cocycles_via_chernsimons_elements} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{Extensions}{Extensions}\dotfill \pageref*{Extensions} \linebreak \noindent\hyperlink{examples_3}{Examples}\dotfill \pageref*{examples_3} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{$\infty$-Lie algebra cohomology} generalizes the notion of [[Lie algebra cohomology]] from [[Lie algebra]]s to [[∞-Lie algebra]]s. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $\mathbf{H}$ an [[(∞,1)-topos]] over duals of algebras over an abelian [[Lawvere theory]] $T$, we have by the theory of [[function algebras on ∞-stacks]] a [[reflective (∞,1)-subcategory]] \begin{displaymath} \mathbf{L} \stackrel{\leftarrow}{\hookrightarrow} \mathbf{H} \end{displaymath} obtained as the [[localization of an (∞,1)-category|localization]] of $\mathbf{H}$ at morphisms that induces [[isomorphism]]s in [[cohomology]] with coefficients in the canonical [[line object]] $\mathbb{A}$, where the small objects in $\mathbf{L}$ are modeled by duals of [[cosimplicial algebra]]s. We may think of $\mathbf{L}$ as the [[(∞,1)-category]] of all [[∞-Lie algebroid]]s inside the [[∞-Lie groupoid]]s which are the objects of $\mathbf{H}$. For instance for $T$ the theory of commutative [[associative algebra]]s over a field, the [[monoidal Dold-Kan correspondence]] identified cosimplicial algebras with [[dg-algebra]]s, which we may think of as the [[Chevalley-Eilenberg algebra]]s of the [[∞-Lie algebroid]]s. An [[∞-Lie algebra]] $\mathfrak{g}$ is a [[connected]] object in $\mathbf{L}$ and \textbf{$\infty$-Lie algebra cohomology} is the [[cohomology|intrinsic cohomology]] of $\mathbf{H}$ restricted to $\mathbf{L}$. Typically $\mathbf{L}$ is [[presentable (∞,1)-category|presented]] by the [[opposite category|opposite]] of a [[function algebras on ∞-stacks|model structure on cosimplicial/cochain algebras]]: the [[Chevalley-Eilenberg algebra]]s of the given [[∞-Lie algebroid]]s. In terms of that model cocycle in $\infty$-Lie algebra cohomology have explicit and familiar algebraic expressions. These we discuss in \begin{itemize}% \item \hyperlink{ExplicitDefinition}{Explicit definition} . \end{itemize} A discussion of details of how exactly this models the general abstract definition is in \begin{itemize}% \item \hyperlink{Topos}{(∞,1)-Topos theoretic interpretation}. \end{itemize} \hypertarget{ExplicitDefinition}{}\subsubsection*{{Explicit definition}}\label{ExplicitDefinition} For $\mathfrak{g}$ an [[∞-Lie algebra]] and $n \in \mathbb{N}$, a [[cocycle]] on $\mathfrak{g}$ in degree $n$ with coefficients in the trivial module is a morphism \begin{displaymath} \mu : \mathfrak{g} \to b^{n-1}\mathbb{R} \end{displaymath} to the [[line Lie n-algebra]]. Dually this is a [[dg-algebra]] morphism \begin{displaymath} CE(\mathfrak{g}) \leftarrow CE(b^{n-1}\mathbb{R}) : \mu \end{displaymath} of [[Chevalley-Eilenberg algebra]]s. here $CE(b^{n-1} \mathbb{R})$ is the [[semifree dga]] on a single generator in degree $n$ with vanishing differential. So this is equivalently an element \begin{displaymath} \mu \in \wedge^n \mathfrak{g}^* \end{displaymath} which is closed in $CE(\mathfrak{g})$. For $\mathfrak{g}$ an ordinary Lie algebra, this latter description reproduces the traditional definition of cocycles in [[Lie algebra cohomology]]. For the moment see \begin{itemize}% \item [[Chevalley-Eilenberg algebra]] \item [[Weil algebra]] \item [[invariant polynomial]] \end{itemize} for more. \hypertarget{Topos}{}\subsubsection*{{$(\infty,1)$-topos theoretic interpretation}}\label{Topos} We may understand the above definitions of $\infty$-Lie algebra cocycles as a special case of the general notion of the [[cohomology|intrinsic cohomology]] of an [[(∞,1)-topos]] by embedding $\infty$-Lie algebras as [[infinitesimal space|infinitesimal]] [[∞-Lie group]]s into the [[(∞,1)-topos]] $\mathbf{H} =$ [[?LieGrpd]] of [[∞-Lie groupoids]]. For a general recognition principle of [[homotopy fibers]] in the [[model structure for L-infinity algebras]] see also (\hyperlink{FiorenzaRogersSchreiber13}{Fiorenza-Rogers-Schreiber 13, theorem 3.1.13}). Recall from [[function algebras on ∞-stacks]] that [[∞-Lie algebroids]] form the [[reflective sub-(∞,1)-category]] \begin{displaymath} \mathbf{L} \stackrel{\leftarrow}{\hookrightarrow} \mathbf{H} \end{displaymath} of a corresponding [[(∞,1)-topos]] $\mathbf{H}$ of structure $\infty$-groupoids. As described at [[?LieGrpd]], one realization of this general situation for genuine $\infty$-Lie groupoids is as follows: Let [[ThCartSp]] be the [[site]] of [[infinitesimal object|infinitesimally]] thickened [[Cartesian space]]s. This is the site for the [[Cahiers topos]]. Then the [[(∞,1)-category of (∞,1)-sheaves]] $\mathbf{H} = Sh(ThCartSp)$ we may take to be the $(\infty,1)$-topos of [[synthetic differential ∞-groupoid]]s. We have then a [[simplicial Quillen adjunction]] \begin{displaymath} (C^\infty Alg^{\Delta})^{op} \stackrel{\leftarrow}{\hookrightarrow} [ThCartSp^{op}, sSet]_{proj,loc} \end{displaymath} between the [[opposite category|opposite]] of the [[function algebras on ∞-stacks|model structure on cosimplicial smooth algebras]]. This models the reflective inclusion of [[∞-Lie algebroid]]s into all synthetic differential $\infty$-groupoids \begin{displaymath} \infty LieAlg stackrel{\leftarrow}{\hookrightarrow} \infty SDGrpd \,. \end{displaymath} Details on this are at [[function algebras on ∞-stacks]]. But the [[function algebras on ∞-stacks|model structure on cosimplicial smooth algebras]]s is the [[transferred model structure]] of the [[model structure on cosimplicial rings]], and for the following discussion we can essentially just as well use the analogous Quillen adjunction without the smooth structure originally considered by [[Bertrand Toen]] \begin{displaymath} (CAlg^\Delta)^{op} \stackrel{\leftarrow}{\hookrightarrow} [CAlg,sSet]_{proj,cov} \end{displaymath} that is referenced and reviewed in some detail at [[rational homotopy theory in an (∞,1)-topos]]. Notice that the embedding map is just degreewise the [[Yoneda embedding]]. Notice moreover that by the [[monoidal Dold-Kan correspondence]] (see there for details) we have that the dual Dold-Kan functor $\Xi : Ch^\bullet_+ \to Ab^\Delta$ extends to the right adjoint part in a [[Quillen equivalence]] between the opposite of the [[model structure on dg-algebras]] and the opposite [[model structure on cosimplicial rings|model structure on cosimplicial algebras]] \begin{displaymath} \Xi^{op} : dgAlg^{op} \stackrel{\simeq_{Quillen}}{\to} (CAlg^\Delta)^{op} \,. \end{displaymath} In total this gives a right Quillen functor \begin{displaymath} R : dgAlg^{op} \stackrel{\Xi^{op}}{\to} (CAlg^\Delta)^{op} \to [CAlg, sSet]_{proj,cov} \end{displaymath} that models the embedding of $\infty$-Lie algebroids into a [[(∞,1)-topos]] of $\infty$-Lie groupoids. When restricted to [[∞-Lie algebra]]s ($\infty$-Lie algebroids over the point) the difference between the sites $CAlg^{op}$ and [[ThCartSp]] plays no role. In fact for that case we could just as well restrict to a site of only [[infinitesimal space]]s, because all homs from a finite non-thickened space into an infinitesimal space are trivial anyway. Therefor for $\mathfrak{g}$ and $\mathfrak{h}$ $\infty$-Lie algebras, a [[cocycle]] on $\mathfrak{g}$ with values in $\mathfrak{h}$ is just a morphism \begin{displaymath} (c : \mathfrak{g} \to \mathfrak{h}) \in \infty LieAlg \subset \infty LieGrpd \end{displaymath} and the [[∞-groupoid]] of cocycles is \begin{displaymath} \infty LieGrpd(\mathfrak{g}, \mathfrak{h}) \simeq \infty LieAlg(\mathfrak{g}, \mathfrak{h}) \,. \end{displaymath} Such cocycles are modeled by morphisms in $dgAlg^{op}$ from a cofibrant representative of $\mathfrak{g}$ to a fibrant representative of $\mathfrak{h}$. Since in $dgAlg$ all objects are fibrant, in $dgAlg^{op}$ all objects are cofibrant. The cofibrant objects in the [[model structure on dg-algebras]] are the [[Sullivan algebra]]s $CE(\mathfrak{h})$. In particular for $\mathfrak{h} = b^{n-1}\mathbb{R}$ we have that $CE(b^{n-1}\mathbb{R})$ is a Sullivan algebra, so $b^{n-1} \mathbb{R}$ is fibrant in $dgAlg^{op}$. In summary, this says that morphisms \begin{displaymath} CE(\mathfrak{g}) \leftarrow CE(b^{n-1}\mathbb{R}) \end{displaymath} indeed model the abstract intrinsic $(\infty,1)$-topos theoretic notion of cocycles in $\infty Lie Algd \subset \infty Lie Grpd$. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} Special cases of $\infty$-Lie algebra cohomology are of course \begin{itemize}% \item [[Lie algebra cohomology]] \item [[nonabelian Lie algebra cohomology]]. \end{itemize} Specific examples include: \begin{itemize}% \item cohomology of [[Poisson Lie algebroids]] is \emph{[[Poisson cohomology]]}. \end{itemize} \hypertarget{transgression_between_invariant_polynomials_and_cocycles_via_chernsimons_elements}{}\subsection*{{Transgression between invariant polynomials and cocycles via Chern-Simons elements}}\label{transgression_between_invariant_polynomials_and_cocycles_via_chernsimons_elements} We recall the procedure by which to an [[∞-Lie algebroid]] [[invariant polynomial]] $\omega$ we associate an [[∞-Lie algebroid]] cocycle $\nu$ that is \emph{in transgression with} $\omega$. The [[dg-algebra]] of [[invariant polynomial]]s is a sub-dg-alghebra of the [[kernel]] of the canonical morphism $W(\mathfrak{a}) \to CE(\mathfrak{a})$ from the [[Weil algebra]] to the [[Chevalley-Eilenberg algebra]] of $\mathfrak{a}$ \begin{displaymath} inv(\mathfrak{a}) \subset CE(\Sigma \mathfrak{a}) = ker(W(\mathfrak{a}) \to CE(\mathfrak{a})) \,. \end{displaymath} From the [[short exact sequence]] \begin{displaymath} CE(\Sigma \mathfrak{a}) \to W(\mathfrak{a}) \to CE(\mathfrak{a}) \end{displaymath} we obtain the long exact sequence in [[chain homology and cohomology|cohomology]] \begin{displaymath} \cdots \to H^{n+1}(CE(\mathfrak{a})) \stackrel{\delta}{\to} H^{n+2}(CE(\Sigma \mathfrak{a})) \to \cdots \,. \end{displaymath} We say that $\mu \in CE(\mathfrak{a})$ is in transgression with $\omega \in inv(\mathfrak{a}) \subset CE(\Sigma \mathfrak{a})$ if their classes map to each other under the connecting homomorphism $\delta$: \begin{displaymath} \delta : [\mu] \mapsto [\omega] \,. \end{displaymath} The following spells out in detail how one finds to a given invariant polynomial $\omega$ the cocycle that it is in transgression with. \begin{enumerate}% \item We first regard the [[invariant polynomial]] $\omega$ as an element of the [[Weil algebra]] $W(\mathfrak{a})$ under the inclusion $inv(\mathfrak{a}) \hookrightarrow W(\mathfrak{a})$, where, by the very definiton of invariant polynomials, it is closed: $d_{W(\mathfrak{a})} \omega = 0$. \item then we find an element $cs_\omega \in W(\mathfrak{a})$ with the property that $d_{W(\mathfrak{a})} cs_\omega = \omega$. This is guranteed to exist because $W(\mathfrak{a})$ has trivial cohomology. \item then we send this element $cs_\omega\in W(\mathfrak{a})$ along the restriction map $W(\mathfrak{a}) \to CS(\mathfrak{a})$ to an elemeent we call $\nu$. \end{enumerate} The procedure is illustarted by the following diagram \begin{displaymath} \itexarray{ 0 && \omega &\leftarrow & \omega \\ \;\;\uparrow^{\mathrlap{d_{CE(\mathfrak{a})}}} && \;\;\uparrow^{\mathrlap{d_{W(\mathfrak{a})}}} \\ \nu &\leftarrow& cs(\omega) \\ \\ \\ \\ CE(\mathfrak{a}) &\leftarrow& W(\mathfrak{a}) &\leftarrow& inv(\mathfrak{a}) } \end{displaymath} From the fact that all morphisms involved respect the differential and from the fact that the image of $\omega$ in $CE(\mathfrak{a})$ vanishes it follows that \begin{itemize}% \item this element $\nu$ satisfies $d_{CE(\mathfrak{a})} \nu = 0$, hence that it is an $\infty$-Lie algebroid cocycle. \item any two different choices of $cs_\omega$ lead to cocylces $\mu$ that are cohomologous. \end{itemize} We say $\nu$ is a cocycle \emph{in transgression with} $\omega$. We may call $cs_{\omega}$ here a \emph{Chern-Simons element} of $\omega$. Because for $A : T X \to \mathfrak{a}$ any collection of [[∞-Lie algebroid valued differential forms]] coming dually from a dg-morphism $\Omega^\bullet(X) \leftarrow W(\mathfrak{a}) : A$ the image $\omega(A)$ of $\omega$ will be a curvature characteristic form and the image $cs_\omega(A)$ its corresponding Chern-Simons form. In the case where $\mathfrak{g}$ is an ordinary semisimple [[nLab:Lie algebra|Lie algebra]], this reduces to the ordinary study of ordinary Chern-Simons 3-forms associated with $\mathfrak{g}$-valued 1-forms. This is described in the section \emph{Semisimple Lie algebras} . \hypertarget{examples_2}{}\subsubsection*{{Examples}}\label{examples_2} For $\mathfrak{g}$ an [[semisimple Lie algebra]], the transgression between the [[Killing form]]-[[invariant polynomial]] and the 3-cocycle $\langle -, [-,-] \rangle$ is exhibited by the ``ordinary'' Chern-Simons element, which gives these [[action functional]] of ordinary [[Chern-Simons theory]]. A [[symplectic Lie n-algebroid]] is an [[∞-Lie algebroid]] equipped with a nondegenerate binary invariant polynomial in degree $n+2$. Examples are \begin{itemize}% \item [[symplectic manifold]]s \item [[Poisson Lie algebroid]]s \item [[Courant algebroid]]s. \end{itemize} The coresponding Chern-Simons elements exhibiting the transgression of these invariant polynomials give [[action functional]]s for generalized [[Chern-Simons theory]] (see the above entries for more details). \hypertarget{Extensions}{}\subsection*{{Extensions}}\label{Extensions} In any [[(∞,1)-topos]] with its intrinsic notion of [[cohomology]], a [[cocycle]] $c : X \to \mathbf{B}^{n+1} A$ classifies an \emph{extension} $\mathbf{B}^n A \to \hat X \to X$. This $\hat X$ is nothing but the [[homotopy fiber]] of $c$, or equivalently the $\mathbf{B}^n A$-[[principal ∞-bundle]] classified by $c$. After embedding [[∞-Lie algebra]]s into the [[(∞,1)-topos]] of [[∞-Lie groupoid]]s as described \hyperlink{Topos}{above}, the same abstract reasoning applies to $\infty$-Lie algebra cocycles and the extensions of $\infty$-Lie algebras that these classify: for $c : \mathfrak{g} \to b^n \mathbb{R}$ a cocycle of $\infty$-Lie algebras, the extension $b^{n-1} \mathbb{R} \to \hat \mathfrak{g} \to \mathfrak{g}$ is the [[homotopy fiber]] of this morphism in [[?LieGrpd]]. \begin{quote}% a more systematic discussion is now in the section at [[synthetic differential ∞-groupoid]]. \end{quote} For $\mathfrak{g}$ an ordinary [[Lie algebra]], this reproduces the ordinary notions of extensions from [[Lie algebra cohomology]] and [[nonabelian Lie algebra cohomology]]. \textbf{Observation} For $c : \mathfrak{g} \to b^n \mathbb{R}$ an $(n+1)$-cocycle of an $\infty$-Lie algebra $\mathfrak{g}$, the ordinary [[pullback]] in $dgAlg^{op}$ \begin{displaymath} \itexarray{ \hat g &\to& inn(b^{n-1}\mathbb{R}) \\ \downarrow && \downarrow \\ \mathfrak{g} &\stackrel{c}{\to}& b^n \mathfrak{R} } \end{displaymath} maps under $R$ to a pullback diagram of simplicial presheaves which exhibits $R(\hat \mathfrak{g})$ as isomorphic to the [[homotopy pullback]] in the [[homotopy category]]. Here the right morphism denotes the dual of the generating cofibration in $dgAlg$, which models the $b^n \mathfrak{R}$-[[universal principal ∞-bundle]]. \textbf{Proof} Being a right Quillen functor, $R$ preserves fibrations and pullbacks, hence \begin{displaymath} \itexarray{ R \hat g &\to& R inn(b^{n-1}\mathbb{R}) \\ \downarrow && \downarrow \\ R \mathfrak{g} &\stackrel{R c}{\to}& R b^n \mathfrak{R} } \end{displaymath} is a pullback of a fibration. Since $[ThCartSp^{op},sSet]_{proj}$ is a [[proper model category|right proper model category]] this is a [[homotopy pullback]], even if $R \mathfrak{g}$ is possibly not fibrant. (The detailed argument for that is reproduced at [[proper model category]].) Since [[∞-stackification]] preserves finite [[(∞,1)-limit]]s, this is sufficient to deduce that $R \hat \mathfrak{g}$ represents in the [[homotopy category]] $Ho([ThCartSp, sSet]_{proj,cov})$ the [[homotopy fiber]] of $R c : R \mathfrak{g} \to R b^n \mathbb{R}$. \hypertarget{examples_3}{}\subsubsection*{{Examples}}\label{examples_3} \begin{itemize}% \item For $\mathfrak{g}$ and $\mathfrak{h}$ ordinary [[Lie algebra]]s, and $der(\mathfrak{h})$ the Lie algebra of [[derivation]]s of $\mathfrak{h}$, a morphism $\mathfrak{g}\to der(\mathfrak{h})$ is a cocycle in [[nonabelian Lie algebra cohomology]] and the extension it classifies is an ordinary [[Lie algebra extension]]. \item The [[string Lie 2-algebra]] is the $b \mathbb{R}$-extension of a semisimple [[Lie algebra]] $\mathfrak{g}$ with bilinear [[invariant polynomial]] $\langle -,-\rangle$ corresponding to the 3-cocycle $\langle -,[-,-]\rangle \in CE(\mathfrak{g})$. \item Similarly for the [[supergravity Lie 3-algebra]] and the [[supergravity Lie 6-algebra]] and all the other extensions in [[schreiber:The brane bouquet]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} A comprehensive discusson of an ambient $\infty$-topos in which $\infty$-Lie algebroid cohomology lives is at \begin{itemize}% \item [[synthetic differential ∞-groupoid]]. \end{itemize} Other notions related to $\infty$-Lie algebroid cohomology include \begin{itemize}% \item \textbf{$\infty$-Lie algebra cocycle} \item [[Chern-Simons element]] \item [[invariant polynomial]] \item [[signs in supergeometry]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion of cohomology of $L_\infty$-algebras is in \begin{itemize}% \item Michael Penkava, \emph{$L_\infty$-algebras and their cohomology} (\href{http://arxiv.org/abs/q-alg/9512014}{arXiv:q-alg/9512014}) \end{itemize} The relation between $L_\infty$-cohomology and extension of $L_\infty$-algebras is discussed around theorem 3.8 of \begin{itemize}% \item [[Andrey Lazarev]], \emph{Models for classifying spaces and derived deformation theory} (\href{http://arxiv.org/abs/1209.3866}{arXiv:1209.3866}) \end{itemize} The general structure of the threory of $\infty$-Lie algebroid cohomology and [[transgression]] between $\infty$-Lie algebroid [[invariant polynomial]]s and -cocycles via [[Chern-Simons element]] was given in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{$L_\infty$-connections} () \end{itemize} A recognition principle for [[homotopy fibers]] of $L_\infty$-homomorphisms appears as theorem 3.1.13 in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:L-∞ algebras of local observables from higher prequantum bundles]]} (\href{http://arxiv.org/abs/1304.6292}{arXiv:1304.6292}) \end{itemize} Discussion of extensions of [[super L-∞ algebras]] based on the [[super Poincare Lie algebra]] is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The brane bouquet|Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields]]} \end{itemize} The hypercohomology of the Chevalley-Eilenberg-de Rham complex of a Lie algebroid L over a scheme with coefficients in an L-module can be expressed as a derived functor as shown in \begin{itemize}% \item [[Ugo Bruzzo]], \emph{Lie algebroid cohomology as a derived functor}, \href{http://arxiv.org/abs/1606.02487}{arxiv/1606.02487} \end{itemize} [[!redirects ∞-Lie algebra cohomology]] [[!redirects L-∞-algebra cohomology]] [[!redirects L-∞ algebra cohomology]] [[!redirects Lie ∞-algebra cohomology]] [[!redirects L-infinity algebra cohomology]] [[!redirects ∞-Lie algebra cocycle]] [[!redirects L-∞-algebra cocycle]] [[!redirects L-∞ algebra cocycle]] [[!redirects Lie ∞-algebra cocoycle]] [[!redirects ∞-Lie algebra cocycles]] [[!redirects infinity-Lie algebra cocycles]] [[!redirects L-∞-algebra cocycles]] [[!redirects L-∞ algebra cocycles]] [[!redirects Lie ∞-algebra cocoycles]] [[!redirects ∞-Lie algebroid cohomology]] [[!redirects L-∞-algebroid cohomology]] [[!redirects L-∞ algebroid cohomology]] [[!redirects Lie ∞-algebroid cohomology]] [[!redirects ∞-Lie algebroid cocycle]] [[!redirects L-∞-algebroid cocycle]] [[!redirects L-∞ algebroid cocycle]] [[!redirects Lie ∞-algebroid cocoycle]] [[!redirects L-∞ cocycle]] [[!redirects L-∞ cocycles]] [[!redirects L-infinity cocycle]] [[!redirects L-infinity cocycles]] [[!redirects L-∞ extension]] [[!redirects L-∞ extensions]] [[!redirects L-infinity extension]] [[!redirects L-infinity extensions]] [[!redirects Lie algebroid cohomology]] [[!redirects Lie algebroid cocycle]] [[!redirects Lie algebroid cocycles]] [[!redirects ∞-Lie algebroid cocycles]] [[!redirects L-∞-algebroid cocycles]] [[!redirects L-∞ algebroid cocycles]] [[!redirects Lie ∞-algebroid cocoycles]] [[!redirects ∞-Lie algebroid cohomology]] [[!redirects infinity-Lie algebroid cohomology]] [[!redirects L-∞ algebra extension]] [[!redirects L-∞ algebra extensions]] [[!redirects L-infinity algebra extension]] [[!redirects L-infinity algebra extensions]] \end{document}