\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{infinity-cohesive site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{sheaves_on_cohesive_sites}{$\infty$-Sheaves on $\infty$-Cohesive sites}\dotfill \pageref*{sheaves_on_cohesive_sites} \linebreak \noindent\hyperlink{aufhebung}{Aufhebung}\dotfill \pageref*{aufhebung} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{$(\infty,1)$-cohesive site} is a [[site]] such that the [[(∞,1)-category of (∞,1)-sheaves]] over it is a [[cohesive (∞,1)-topos]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{InfinityCohesiveSite}\hypertarget{InfinityCohesiveSite}{} A [[site]] $C$ is \textbf{$\infty$-cohesive} over [[∞Grpd]] if it is \begin{itemize}% \item a [[strongly ∞-connected site]] \item and an [[∞-local site]]. \end{itemize} In detail this means that $C$ is \begin{itemize}% \item a [[site]] -- a [[small category]] $C$ equipped with a [[coverage]]; \item with the property that \begin{itemize}% \item it has a [[terminal object]] $*$; \item it is a [[cosifted category]] (for instance in that it has all [[finite products]], see at \emph{[[categories with finite products are cosifted]]}); \item for every [[covering]] family $\{U_i \to U\}$ in $C$ \begin{itemize}% \item the [[Cech nerve]] $C(U) \in [C^{op}, sSet]$ is degreewise a [[coproduct]] of [[representable functor|representables]]; \item the [[simplicial set]] obtained by replacing each copy of a representable by a point is [[contractible]] (weakly equivalent to the point in the [[classical model structure on simplicial sets]]) \begin{displaymath} \underset{\longrightarrow}{\lim} C(U) \stackrel{\simeq}{\to} * \end{displaymath} \item the simplicial set of points in $C(U)$ is weakly equivalent to the set of points of $U$: \begin{displaymath} \underset{\longleftarrow}{\lim}C(U) = Hom_C(*, C(U)) \stackrel{\simeq}{\to} Hom_C(*,U) \,. \end{displaymath} \end{itemize} \end{itemize} \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} These conditions are stronger than for a [[cohesive site]], as the latter only guarantees cohesiveness of the 1-topos over it. This definition is supposed to model the following ideas: \begin{itemize}% \item every object $U$ has an underlying set of points $Hom_C(*,U)$. We may think of each $U$ as specifying one way in which there can be cohesion on this underlying set of points; \item in view of the [[nerve theorem]] the condition that $\lim_\to C(U)$ is contractible means that $U$ itself is contractible, as seen by the [[Grothendieck topology]] on $C$. This reflects the \emph{local} aspect of cohesion: we only specify cohesive structure on contractible lumps of points; \item in view of this, the remaining condition that $Hom_C(*,C(U))$ is contractible is the $\infty$-analog of the condition on a [[concrete site]] that $Hom_C(*,\coprod_i U_i) \to Hom_C(*, U)$ is surjective. This expresses that the notion of topology on $C$ and its concreteness over [[Set]] are consistent. \end{itemize} \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{Presheaves}\hypertarget{Presheaves}{} The site for a [[presheaf topos]], hence with trivial topology, is $\infty$-cohesive, def. \ref{InfinityCohesiveSite}, if it has [[finite products]]. \end{example} \begin{proof} All covers $\{U_i \to U\}$ consist of only the [[identity]] morphism $\{U \stackrel{Id}{\to} U\}$. The [[Cech nerve]] $C\{U\}$ is then the [[simplicial object]] constant on $U$ and hence satisfies its two conditions above trivially. \end{proof} \begin{example} \label{}\hypertarget{}{} The following [[sites]] are $\infty$-cohesive, def. \ref{InfinityCohesiveSite}: \begin{itemize}% \item the category [[CartSp]] with covering families given by open covers $\{U_i \hookrightarrow U\}$ by [[geodesically convex|convex]] subsets $U_i$; we can take the morphisms $\mathbb{R}^k \to \mathbb{R}^l$ in $CartSp$ to be \begin{itemize}% \item [[continuous maps]] -- in which case the sheaf topos over it models generalized [[topological space]]s, the [[2-sheaf]] [[2-topos]] contains for instance [[topological stack]]s; \item or [[smooth maps]] -- in which case the sheaf topos models generalized [[smooth space]]s such as [[diffeological space]]s, the [[(∞,1)-sheaf (∞,1)-topos]] is that of [[∞-Lie groupoid]]s; \end{itemize} \item the site [[ThCartSp]] $\subset \mathbb{L}$ of [[smooth loci]] consisting of smooth loci of the form $R^n \times D^l_{(k)}$ with the second factor infinitesimal, where covering families are those of the form $\{U_i \times D^l_{(k)} \to U \times D^l_{(k)}\}$ with $\{U_i \to U\}$ a covering family in $CartSp$ as above. This is a site of definition for the [[Cahiers topos]]. \end{itemize} More discussion of these two examples is at [[∞-Lie groupoid]] and [[∞-Lie algebroid]]. \end{example} \begin{proof} Since every [[star-shaped]] region in $\mathbb{R}^n$ is [[diffeomorphic]] to an [[open ball]] (see there for details) we have that the covers $\{U_i \to U\}$ on [[CartSp]] by convex subsets are [[good open covers]] in the strong sense that any finite non-empty intersection is [[diffeomorphic]] to an [[open ball]] and hence diffeomorphic to a [[Cartesian space]]. Therefore these are [[good open cover]]s in the strong sense of the term and their [[Cech nerve]]s $C(U)$ are degreewise coproducts of representables. The fact that $\lim_\to C(U) \simeq *$ follows from the [[nerve theorem]], using that a [[Cartesian space]] regarded as a [[topological space]] is [[contractible]]. \end{proof} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{sheaves_on_cohesive_sites}{}\subsubsection*{{$\infty$-Sheaves on $\infty$-Cohesive sites}}\label{sheaves_on_cohesive_sites} \begin{theorem} \label{}\hypertarget{}{} Let $C$ be an $\infty$-cohesive site. Then the [[(∞,1)-sheaf (∞,1)-topos]] $Sh_{(\infty,1)}(C)$ over $C$ is a [[cohesive (∞,1)-topos]] that satisfies the axiom ``discrete objects are concrete'' . If moreover for all objects $U$ of $C$ we have that $C(*,U)$ is [[inhabited set|inhabited]], then the axiom ``pieces have points'' also holds. \end{theorem} Since the [[(n,1)-topos]] over a site for any $n \in \mathbb{N}$ arises as the full [[sub-(∞,1)-category]] of the $(\infty,1)$-topos on the $n$-[[truncated]] objects and since the definition of cohesive $(n,1)$-topos is compatible with such truncation, it follows that \begin{cor} \label{}\hypertarget{}{} Let $C$ be an $\infty$-cohesive site. Then for all $n \in \mathbb{N}$ the [[(n,1)-topos]] $Sh_{(n,1)}(C)$ is cohesive. \end{cor} To prove this, we need to show that \begin{enumerate}% \item $Sh_{(\infty,1)}(C)$ is a [[locally ∞-connected (∞,1)-topos]] and a [[∞-connected (∞,1)-topos]]. This follows with the discussion at [[∞-connected site]]. \item $Sh_{(\infty,1)}(C)$ is a [[local (∞,1)-topos]]. This follows with the discussion at [[∞-local site]]. \item The [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos]] $\Pi : Sh_{(\infty,1)}(C) \to \infty Grpd$ preserves finite [[(∞,1)-products]]. \item If $\Gamma(U)$ is not empty for all $U \in C$, then \emph{pieces have points} in $Sh_{(\infty,1)}(C)$. \end{enumerate} The last two conditions we demonstrate now. \begin{prop} \label{}\hypertarget{}{} The functor $\Pi : Sh_{(\infty,1)}(C) \to \infty Grpd$ whose existence is guaranteed by the above proposition preserves [[product]]s: \begin{displaymath} \Pi(A \times B) \simeq \Pi(A) \times \Pi(B) \,. \end{displaymath} \end{prop} \begin{proof} By the discussion at [[∞-connected site]] we have that $\Pi$ is given by the [[(∞,1)-colimit]] $\lim_\to : PSh_{(\infty,1)}(C) \to \infty Grpd$. By the assumption that $C$ is a [[cosifted (∞,1)-category]], it follows that this operation preserves finite products. \end{proof} Finally we prove that \emph{pieces have points} in $Sh_{(\infty,1)}(C)$ if all objects of $C$ have points. \begin{proof} By the above discussion both $\Gamma$ and $\Pi$ are presented by left Quillen functors on the projective model structure $[C^{op}, sSet]_{proj,loc}$. By Dugger's cofibrant replacement theorem (see [[model structure on simplicial presheaves]]) we have for $X$ any simplicial presheaf that a cofibrant replacement is given by an object that in the lowest two degrees is \begin{displaymath} \cdots \stackrel{\to}{\stackrel{\to}{\to}} \coprod_{U_0 \to U_1 \to X_1} U \stackrel{\to}{\to} \coprod_{U \to X_0} U \,, \end{displaymath} where the coproduct is over all morphisms out of representable presheaves $U_i$ as indicated. The model for $\Gamma$ sends this to \begin{displaymath} \cdots \stackrel{\to}{\stackrel{\to}{\to}}\coprod_{U_0 \to U_1 \to X_0} C(*,U_0) \stackrel{\to}{\to} \coprod_{U \to X_0} C(*,U) \,, \end{displaymath} whereas the model for $\Pi$ sends this to \begin{displaymath} \cdots \stackrel{\to}{\stackrel{\to}{\to}}\coprod_{U_0 \to U_1 \to X_0} * \stackrel{\to}{\to} \coprod_{U \to X_0} * \,. \end{displaymath} The morphism from the first to the latter is the evident one that componentwise sends $C(*,U)$ to the point. Since by assumption each $C(*,U)$ is nonempty, this is componentwise an epi. Hence the whole morphism is an epi on $\pi_0$. \end{proof} \hypertarget{aufhebung}{}\subsubsection*{{Aufhebung}}\label{aufhebung} A [[cohesive (∞,1)-topos]] over an $\infty$-cohesive site satisfies [[Aufhebung]] of the [[unity of opposites|moments]] of [[becoming]]. See at \emph{[[Aufhebung]]} the section \emph{\href{http://ncatlab.org/nlab/show/Aufhebung#ExamplesBecomingFormalization}{Aufhebung of becoming -- Over cohesive sites}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[locally connected topos]] / [[locally ∞-connected (∞,1)-topos]] \begin{itemize}% \item [[connected topos]] / [[∞-connected (∞,1)-topos]] \item [[strongly connected topos]] / [[strongly ∞-connected (∞,1)-topos]] \item [[totally connected topos]] / [[totally ∞-connected (∞,1)-topos]] \end{itemize} \item [[local topos]] / [[local (∞,1)-topos]]. \item [[cohesive topos]] / [[cohesive (∞,1)-topos]] \end{itemize} and \begin{itemize}% \item [[locally connected site]] / [[locally ∞-connected site]] \begin{itemize}% \item [[connected site]] / [[∞-connected site]] \item [[strongly connected site]] / [[strongly ∞-connected site]] \item [[totally connected site]] / [[totally ∞-connected site]] \end{itemize} \item [[local site]] / [[∞-local site]] \item [[cohesive site]], \textbf{∞-cohesive site} \end{itemize} [[!redirects ∞-cohesive site]] [[!redirects ∞-cohesive sites]] [[!redirects (infinity,1)-cohesive site]] [[!redirects (∞,1)-cohesive site]] [[!redirects (infinity,1)-cohesive sites]] \end{document}