\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{infinity-connected (infinity,1)-site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[site]] being \emph{locally and globally $\infty$-connected} means that it satisfies sufficient conditions such that the [[(∞,1)-category of (∞,1)-sheaves]] over it is a [[locally ∞-connected (∞,1)-topos]] and a [[∞-connected (∞,1)-topos]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udef} A a [[site]] is \textbf{locally and globally $\infty$-connected} over [[∞Grpd]] if \begin{itemize}% \item it has a [[terminal object]] * \item for every [[covering]] family $\{U_i \to U\}$ in $C$ \begin{enumerate}% \item the [[Cech nerve]] $C(\{U_i\}) \in [C^{op}, sSet]$ is degreewise a [[coproduct]] of [[representable functor|representables]]; \item the [[simplicial set]] obtained by replacing each copy of a representable by a point is [[contractible]], equivalently the [[colimit]] $\lim_\to : [C^{op}, sSet] \to sSet$ of $C(\{U_i\})$ has a [[weak homotopy equivalence]] to the point \begin{displaymath} \lim_\to C(\{U\}) \stackrel{\simeq}{\to} * \,. \end{displaymath} \end{enumerate} \end{itemize} \end{udef} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{utheorem} The [[(∞,1)-sheaf (∞,1)-topos]] $Sh_{(\infty,1)}(C)$ over locally and globally $\infty$-conneted site $C$, regarded as an [[(∞,1)-site]], is a ([[n-localic (∞,1)-topos|1-localic]]) [[locally ∞-connected (∞,1)-topos]] and [[∞-connected (∞,1)-topos]], in that it comes with a triple of [[adjoint (∞,1)-functor]]s \begin{displaymath} (\Pi \dashv \Delta \dashv \Gamma) : Sh_{(\infty,1)}(C) \stackrel{\stackrel{\Pi}{\to}}{\stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\to}}} \infty Grpd \end{displaymath} such that $\Pi$ preserves the [[terminal object]]. \end{utheorem} To prove this, we we use the [[model structure on simplicial presheaves]] to [[locally presentable (∞,1)-category|present]] $Sh_{(\infty,1)}(C)$. Write $[C^{op}, sSet]_{proj}$ for the projective global model structure and $[C^{op}, sSet]_{proj,loc}$ for its [[Bousfield localization of model categories|left Bousfield localization]] at the set of morphisms $C(\{U_i\}) \to U$ out of the [[Cech nerve]] for each covering family $\{U_i \to U\}$, and $[C^{op}, sSet]_{proj,loc}^\circ$ for the [[Kan complex]]-[[enriched category]] on the fibrant-cofibrant objects. By the discussion at [[model structure on simplicial presheaves]] we have \begin{displaymath} Sh_{(\infty,1)}(C) \simeq [C^{op}, sSet]_{proj, loc}^\circ \end{displaymath} and the [[adjoint (∞,1)-functor]]s on the left are presented by [[simplicial Quillen adjunction]]s on the right. To establish these, we proceed by a sequence of lemmas. \begin{ulemma} The model categories \begin{itemize}% \item standard [[model structure on simplicial sets]] $sSet_{Quillen}$; \item global [[model structure on simplicial presheaves]] $[C^{op}, sSet]_{proj,loc}$; \item local [[model structure on simplicial presheaves]] $[C^{op}, sSet]_{proj,loc}$ \end{itemize} are all [[left proper model categories]]. \end{ulemma} \begin{proof} The first since all objects are cofibrant. The second by general statements about the global [[model structure on functors]], the third because [[Bousfield localization of model categories|left Bousfield localization]] preserves left propernes. \end{proof} \begin{ulemma} For $\{U_i \to U\}$ a [[covering]] family in the $\infty$-connected site $C$, the [[Cech nerve]] $C(\{U_i\}) \in [C^{op}, sSet]$ is a cofibrant [[resolution]] of $U$ both in the projective model structure $[C^{op}, sSet]_{proj}$ as well as in the Cech local model structure $[C^{op}, sSet]_{proj,loc}$. \end{ulemma} \begin{proof} By assumption on $C$ we have that $C(\{U_i\})$ is a [[split hypercover]]. By in the projective model structure this implies that $C(U)$ is cofibrant in the global model structure. By general properties of left [[Bousfield localization of model categories|Bousfield localization]] we have that the cofibrations in the local model structure as the same as in the global one. Finally that $C(\{U_i\}) \to U$ is a weak equivalence in the local model structure holds effectively by definition (since we are localizing at these morphisms). \end{proof} \begin{uprop} On a locally and globally $\infty$-connected site $C$ the [[global section]] [[(∞,1)-geometric morphism]] \begin{displaymath} (\Delta \dashv \Gamma) : Sh_{(\infty,1)}(C) \stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\to}} \infty Grpd \end{displaymath} is [[presentable (∞,1)-category|presented]] by the [[simplicial Quillen adjunction]] \begin{displaymath} (Const \dashv \Gamma) : [C^{op}, sSet]_{proj,loc} \stackrel{\leftarrow}{\to} sSet_{Quillen} \,, \end{displaymath} where $\Gamma$ is the functor that evaluates on the point, $\Gamma X = X(*)$, and $Const$ is the functor that sends a simplicial set $S$ to the presheaf constant on that value, $Const S : U \mapsto S$. \end{uprop} \begin{proof} We use (as described there) that [[adjoint (∞,1)-functor]]s are modeled by [[simplicial Quillen adjunction]]s between the [[simplicial model categories]] that model the $(\infty,1)$-categories in question. That we have an [[adjunction]] $(Const \dashv \Gamma)$ follows for instance by observing that since $C$ has a [[terminal object]] we may think of $\Gamma$ as being the functor $\Gamma = \lim_\leftarrow$ that takes the [[limit]]. To see that we have a [[Quillen adjunction]] first notice that we have a Quillen adjunction \begin{displaymath} (Const \dashv \Gamma) : [C^{op}, sSet]_{proj} \stackrel{\leftarrow}{\to} sSet_{Quillen} \end{displaymath} on the global model structure, since $\Gamma$ manifestly preserves fibrations and acyclic fibrations there. Since $[C^{op}, sSet]_{proj,loc}$ is [[proper model category|left proper]] and has the same cofibrations as the global model structure, it follows with [[Higher Topos Theory|HTT, corollary A.3.7.2]] (see the discussion of ) that for this to descend to a Quillen adjunction on the local model structure it is sufficient that $\Gamma$ preserves fibrant objects. But every fibrant object in the local structure is in particular fibrant in the global structure, hence in particular fibrant over the terminal object of $C$. The left [[derived functor]] of $Const : sSet_{Quillen} \to [C^{op},sSet]_{proj}$ preserves [[homotopy limit]]s (because [[(∞,1)-limit]]s in an [[(∞,1)-category of (∞,1)-presheaves]] are computed objectwise), and [[∞-stackification]], the left derived functor of $Id : [C^{op}, sSet]_{proj} \to [C^{op}, sSet]_{proj,loc}$ is a left [[exact (∞,1)-functor]], therefore the left derived functor of $Const : sSet_{Quillen} \to [C^{op}, sSet]_{proj,loc}$ preserves finite homotopy limits. This means that our Quillen adjunction does model a [[(∞,1)-geometric morphism]] $Sh_{(\infty,1)}(C) \to \infty Grpd$. By the discussion at [[global section]] the space of these geometric morphisms to [[∞Grpd]] is [[contractible]], hence this is indeed a representative of the terminal geometric morphism as claimed. \end{proof} \begin{proof} By general abstract facts the [[sSet]]-functor $Const : sSet \to [C^{op}, sSet]$ given on $S \in sSet$ by $Const_S : U \mapsto S$ for all $U \in C$ has an [[sSet]]-[[left adjoint]] \begin{displaymath} \Pi : X \mapsto \int^U X(U) = \lim_\to X \end{displaymath} naturally in $X$ and $S$, given by the [[colimit]] operation. Notice that since [[sSet]] is itself a [[category of presheaves]] (on the [[simplex category]]), these colimits are degreewise colimits in [[Set]]. Also notice that the colimit over a [[representable functor]] is the point (by a simple [[Yoneda lemma]]-style argument). Regarded as a functor $sSet_{Quillen} \to [C^{op}, sSet]_{proj}$ the functor $Const$ manifestly preserves fibrations and acyclic fibrations and hence \begin{displaymath} (\Pi \dashv Const) : [C^{op}, sSet]_{proj} \stackrel{\overset{\lim_\to}{\to}}{\underset{Const}{\leftarrow}} sSet_{Quillen} \end{displaymath} is a [[Quillen adjunction]], in particular $\Pi : [C^{op},sSet]_{proj} \to sSet_{Quillen}$ preserves cofibrations. Since by general properties of left [[Bousfield localization of model categories]] the cofibrations of $[C^{op},sSet]_{proj,loc}$ are the same, also $\Pi : [C^{op}, sSet]_{proj,loc} \to sSet_{Quillen}$ preserves cofibrations. Since $sSet_{Quillen}$ is a [[left proper model category]] it follows as before with [[Higher Topos Theory|HTT, corollary A.3.7.2]] (see the discussion of ) that for \begin{displaymath} (\Pi \dashv Const) : [C^{op}, sSet]_{proj,loc} \stackrel{\overset{\lim_\to}{\to}}{\underset{Const}{\leftarrow}} sSet_{Quillen} \end{displaymath} to be a [[Quillen adjunction]], it suffices to show that $Const$ preserves fibrant objects. That means that constant simplicial presheaves satisfy [[descent]] along [[covering]] families in the $\infty$-cohesive site $C$: for every covering family $\{U_i \to U\}$ in $C$ and every simplicial set $S$ it must be true that \begin{displaymath} [C^{op}, sSet](U, Const S) \to [C^{op}, sSet](C(U), Const S) \end{displaymath} is a [[homotopy equivalence]] of [[Kan complexes]]. (Here we use that $U$, being a [[representable functor|representable]], is cofibrant, that $C(U)$ is cofibrant by the above lemma and that $Const S$ is fibrant in the projective structure by the assumption that $S$ is fibrant. So the simplicial hom-complexes in the above equaltion really are the correct [[derived hom-space]]s.) But that this is the case follows by the condition on the $\infty$-cohesive site $C$ by which $\lim_\to C(U) \simeq *$: using this it follows that \begin{displaymath} [C^{op}, sSet](C(U), Const S) = sSet(\lim_\to C(U), S) \simeq sSet(*, S) = S \,. \end{displaymath} So we have established that also \begin{displaymath} (\Pi \dashv Const) : [C^{op}, sSet]_{proj,loc} \stackrel{\overset{\lim_\to}{\to}}{\underset{Const}{\leftarrow}} sSet_{Quillen} \end{displaymath} is a [[Quillen adjunction]]. It is clear that the left [[derived functor]] of $\Pi$ preserves the terminal object: since that is representable by assumption on $C$, it is cofibrant in $[C^{op}, sSet]_{proj,loc}$, hence $\mathbb{L} \lim_\to * = \lim_\to * = *$. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{uprop} The sites \begin{itemize}% \item [[CartSp]], [[ThCartSp]]. \end{itemize} are locally and globally $\infty$-connected and in fact [[∞-cohesive site|∞-cohesive]]. \end{uprop} This implies that [[?LieGrpd]] is a [[cohesive (∞,1)-topos]]. See there for details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[locally connected topos]] / [[locally ∞-connected (∞,1)-topos]] \begin{itemize}% \item [[connected topos]] / [[∞-connected (∞,1)-topos]] \item [[strongly connected topos]] / [[strongly ∞-connected (∞,1)-topos]] \item [[totally connected topos]] / [[totally ∞-connected (∞,1)-topos]] \end{itemize} \item [[local topos]] / [[local (∞,1)-topos]]. \item [[cohesive topos]] / [[cohesive (∞,1)-topos]] \end{itemize} and \begin{itemize}% \item [[locally connected site]] / [[locally ∞-connected (∞,1)-site]] \begin{itemize}% \item [[connected site]] / \textbf{∞-connected (∞,1)-site} \item [[strongly connected site]] / [[strongly ∞-connected site]] \item [[totally connected site]] / [[totally ∞-connected site]] \end{itemize} \item [[local site]] / [[∞-local site]] \item [[cohesive site]], [[∞-cohesive site]] \end{itemize} [[!redirects ∞-connected site]] [[!redirects infinity-connected site]] [[!redirects ∞-connected sites]] [[!redirects infinity-connected sites]] [[!redirects ∞-connected (∞,1)-site]] [[!redirects ∞-connected (∞,1)-sites]] \end{document}