\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{infinity-group of units} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{unaugmented_definition}{Unaugmented definition}\dotfill \pageref*{unaugmented_definition} \linebreak \noindent\hyperlink{AugmentedDefinition}{Augmented definition}\dotfill \pageref*{AugmentedDefinition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{AdjointnessToGroupRing}{Adjointness to $\infty$-group $\infty$-ring}\dotfill \pageref*{AdjointnessToGroupRing} \linebreak \noindent\hyperlink{unaugmented_case}{Unaugmented case}\dotfill \pageref*{unaugmented_case} \linebreak \noindent\hyperlink{augmented_case}{Augmented case}\dotfill \pageref*{augmented_case} \linebreak \noindent\hyperlink{homotopy_groups}{Homotopy groups}\dotfill \pageref*{homotopy_groups} \linebreak \noindent\hyperlink{CohomologyAndLogarithm}{Cohomology and logarithm}\dotfill \pageref*{CohomologyAndLogarithm} \linebreak \noindent\hyperlink{RelationToPicardInfinityGroups}{Relation to Picard $\infty$-group and Brauer $\infty$-group}\dotfill \pageref*{RelationToPicardInfinityGroups} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{SnatihTheorem}{Snaith's theorem and the units of K-theory and complex cobordism}\dotfill \pageref*{SnatihTheorem} \linebreak \noindent\hyperlink{units_of_topological_modular_forms}{Units of topological modular forms}\dotfill \pageref*{units_of_topological_modular_forms} \linebreak \noindent\hyperlink{inclusion_of_circle_bundles_into_higher_chromatic_cohomology}{Inclusion of circle $n$-bundles into higher chromatic cohomology}\dotfill \pageref*{inclusion_of_circle_bundles_into_higher_chromatic_cohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The generalization in [[(∞,1)-category theory]] of the notion of \emph{[[group of units]]} in ordinary category theory. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{unaugmented_definition}{}\subsubsection*{{Unaugmented definition}}\label{unaugmented_definition} \begin{defn} \label{PlainInfinityGroupOfUnits}\hypertarget{PlainInfinityGroupOfUnits}{} Let $A$ be an [[A-∞ algebra|A-∞]] [[ring spectrum]]. For $\Omega^\infty A$ the underlying [[A-∞ space]] and $\pi_0 \Omega^\infty A$ the ordinary [[ring]] of connected components, write $(\pi_0 \Omega^\infty A)^\times$ for its [[group of units]]. Then the [[∞-group of units]] \begin{displaymath} A^\times \coloneqq GL_1(A) \end{displaymath} of $A$ is the [[(∞,1)-pullback]] $GL_1(A)$ in \begin{equation} \itexarray{ GL_1(A) &\to& \Omega^\infty A \\ \downarrow &(pb)& \downarrow \\ (\pi_0 \Omega^\infty A)^\times &\to& \pi_0 \Omega^\infty A } \,. \label{GL1AsPullback}\end{equation} \end{defn} \begin{remark} \label{}\hypertarget{}{} In terms of [[derived algebraic geometry]] one has that \begin{displaymath} GL_1(A) \simeq \mathbb{G}_m(A) = Hom(Spec A, \mathbb{G}_m) \end{displaymath} is the [[mapping space]] from $Spec A$ into the [[multiplicative group]]. This point of view is adopted for instance in (\hyperlink{Lurie}{Lurie, p. 20}). \end{remark} \hypertarget{AugmentedDefinition}{}\subsubsection*{{Augmented definition}}\label{AugmentedDefinition} There is slight refinement of the above definition, which essentially adds one 0-th ``grading'' homotopy group to $B gl_1(E)$ and thereby makes the $\infty$-group of units of [[E-∞ rings]] be canonically [[augmented ∞-group|augmented]] over the [[sphere spectrum]] (\hyperlink{Sagave11}{Sagave 11}). \begin{defn} \label{AugmentedGroupOfUnits}\hypertarget{AugmentedGroupOfUnits}{} There is a functor \begin{displaymath} gl_1^J \colon CRing_\infty \to AbGrp_\infty/\mathbb{S} \,, \end{displaymath} given by \ldots{} \end{defn} This is (\hyperlink{Sagave11}{Sagave 11, def. 3.14 in view of example 3.8}, \hyperlink{SagaveSchlichtkrull11}{Sagave-Schlichtkrull 11, above theorem 1.8}). See also (\hyperlink{Sagave11}{Sagave 11, section 1.4}) for comments on how this yields an $\infty$-version of $\mathbb{Z}$-grading on an abelian group. In fact this grading extends form the group of units to the full $\infty$-ring (\hyperlink{SagaveSchlichtkrull11}{Sagave-Schlichtkrull 11, theorem 1.7- 1.8}). \begin{prop} \label{FiberSequenceForExtendedGl1}\hypertarget{FiberSequenceForExtendedGl1}{} For $E$ an [[E-∞ ring]], there is a [[homotopy fiber sequence]] of [[abelian ∞-groups]] \begin{displaymath} gl_1(E) \to gl_1^J(E) \to \mathbb{S} \,, \end{displaymath} where on the left we have the ordinary $\infty$-group of units of def. \ref{PlainInfinityGroupOfUnits} and on the right we have the [[sphere spectrum]], regarded (being a [[connective spectrum]]) as an [[abelian ∞-group]]. \end{prop} Here the existence of the map $gl_1(E) \to gl_1^J(E)$ is (\hyperlink{Sagave11}{Sagave 11, lemma 2.12 + lemma 3.16}). The fact that the resulting sequence is a homotopy fiber sequence is (\hyperlink{Sagave11}{Sagave 11, prop. 4.1}). Using this, there is now a modified delooping of the ordinary $\infty$-group of units: \begin{defn} \label{}\hypertarget{}{} Write $bgl_1^\ast(E)$ for the [[homotopy cofiber]] of $gl_1^J(E) \to \mathbb{S}$ to yield \begin{displaymath} gl_1(E) \to gl_1^J(E) \to \mathbb{S} \to bgl_1^\ast(E) \,. \end{displaymath} \end{defn} (\hyperlink{Sagave11}{Sagave 11, prop. 4.3}) \begin{remark} \label{}\hypertarget{}{} It ought to be true that the non-connective delooping $bgl_1^\ast(E)$ sits inside the full [[Picard ∞-group]] of $E Mod$. (\hyperlink{Sagave11}{Sagave 11, remark 4.11}). (Apparently it's the full inclusion on those degree-0 twists which are grading twists, i.e. on the elements $(-)\wedge\Sigma^n E$.) See also at \emph{\href{twisted+cohomology#InfSections}{twisted cohomology -- by R-module bundles}}. \end{remark} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{AdjointnessToGroupRing}{}\subsubsection*{{Adjointness to $\infty$-group $\infty$-ring}}\label{AdjointnessToGroupRing} \hypertarget{unaugmented_case}{}\paragraph*{{Unaugmented case}}\label{unaugmented_case} \begin{defn} \label{GroupOfUnitsFunctor}\hypertarget{GroupOfUnitsFunctor}{} Write \begin{displaymath} gl_1 \; \colon \; CRing_\infty \to AbGrp_\infty \end{displaymath} for the [[(∞,1)-functor]] which sends a [[E-∞ ring|commutative ∞-ring]] to its [[∞-group of units]]. \end{defn} \begin{theorem} \label{}\hypertarget{}{} The [[∞-group of units]] [[(∞,1)-functor]] of def. \ref{GroupOfUnitsFunctor} is a right-[[adjoint (∞,1)-functor]] \begin{displaymath} CRing_\infty \stackrel{\overset{\mathbb{S}[-]}{\leftarrow}}{\underset{gl_1}{\to}} AbGrp_\infty \,. \end{displaymath} \end{theorem} This is (\hyperlink{ABGHR08}{ABGHR 08, theorem 2.1/3.2, remark 3.4}). \begin{remark} \label{}\hypertarget{}{} The [[left adjoint]] \begin{displaymath} \mathbb{S}[-] \colon AbGrp_\infty \to CRing_\infty \end{displaymath} is a higher analog of forming the [[group ring]] of an ordinary [[abelian group]] over the [[integers]] \begin{displaymath} \mathbb{Z}[-] \colon Ab \to CRing \,, \end{displaymath} which is indeed [[left adjoint]] to forming the ordinary [[group of units]] of a ring. We might call $\mathbb{S}[A]$ the \textbf{[[∞-group ∞-ring]]} of $A$ over the [[sphere spectrum]]. \end{remark} \hypertarget{augmented_case}{}\paragraph*{{Augmented case}}\label{augmented_case} Also the augmented $\infty$-group of units functor of def. \ref{AugmentedGroupOfUnits} is a homotopy right adjoint. (\hyperlink{Sagave11}{Sagave 11, theorem 1.7}). \hypertarget{homotopy_groups}{}\subsubsection*{{Homotopy groups}}\label{homotopy_groups} The [[homotopy groups]] of $GL_1(E)$ are \begin{displaymath} \pi_n(GL_1(E)) = \left\{ \itexarray{ \pi_0(E)^\times & |\, n = 0 \\ \pi_n(E) & | \, n \geq 1 } \right. \end{displaymath} \hypertarget{CohomologyAndLogarithm}{}\subsubsection*{{Cohomology and logarithm}}\label{CohomologyAndLogarithm} Given $E$ an [[E-∞ ring]], then write $gl_1(E)$ for its $\infty$-group of units regarded as a [[connective spectrum]]. For $X$ the [[homotopy type]] of a [[topological space]], then the [[cohomology]] [[Brown representability theorem|represented]] by $gl_1(E)$ in degree 0 is the ordinary [[group of units]] in the [[cohomology ring]] of $E$: \begin{displaymath} H^0(X, gl_1(E)) \simeq (E^0(X))^\times \,. \end{displaymath} In positive degree the canonical map of pointed homotopy types $GL_1(E) = \Omega^\infty gl_1(E) \to \Omega^\infty E$ is in fact an [[isomorphism]] on all [[homotopy groups]] \begin{displaymath} \pi_{\bullet \geq 1} GL_1(E) \simeq \pi_{\bullet \geq 1} \Omega^\infty E \,. \end{displaymath} On cohomology elements this map \begin{displaymath} \pi_q(gl_1(E)) \simeq \tilde H^0(S^q, gl_1(E)) \simeq (1+ \tilde R^0(S^q))^\times \subset (R^0(S^q))^\times \end{displaymath} is [[logarithm]]-like, in that it sends $1 + x \mapsto x$. But there is not a homomorphism of [[spectra]] of this form. This only exists after [[K(n)-local stable homotopy theory|K(n)-localization]], where it is called then the [[logarithmic cohomology operation]], see there for more. (\hyperlink{Rezk06}{Rezk 06}) \hypertarget{RelationToPicardInfinityGroups}{}\subsubsection*{{Relation to Picard $\infty$-group and Brauer $\infty$-group}}\label{RelationToPicardInfinityGroups} Given an [[E-∞ ring]] $E$, the [[looping]] of the Brauer $\infty$-group is the [[Picard ∞-group]] (\hyperlink{Szymik11}{Szymik 11, theorem 5.7}). \begin{displaymath} \Omega Br(E) \simeq Pic(E). \end{displaymath} The [[looping]] of that is the ∞-group of units (\hyperlink{Sagave11}{Sagave 11, theorem 1.2}). \begin{displaymath} \Omega^2 Br(E) \simeq \Omega Pic(E) \simeq GL_1(E) \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{SnatihTheorem}{}\subsubsection*{{Snaith's theorem and the units of K-theory and complex cobordism}}\label{SnatihTheorem} [[Snaith's theorem]] asserts that \begin{enumerate}% \item the [[K-theory spectrum]] for [[complex K-theory]] is the [[∞-group ∞-ring]] of the [[circle 2-group]] localized away from the [[Bott element]] $\beta$: \begin{displaymath} KU \simeq (\mathbb{S}[B U(1)])[\beta^{-1}] \,; \end{displaymath} \item the [[periodic complex cobordism spectrum]] is the [[∞-group ∞-ring]] of the [[classifying space]] for stable [[complex vector bundles]] (the classifying space for [[topological K-theory]]) localized away from the [[Bott element]] $\beta$: \begin{displaymath} MU \simeq (\mathbb{S}[B U])[\beta^{-1}] \,. \end{displaymath} \end{enumerate} \hypertarget{units_of_topological_modular_forms}{}\subsubsection*{{Units of topological modular forms}}\label{units_of_topological_modular_forms} Analysis of the $\infty$-group of units of [[tmf]] is in (\hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10, from section 12 on}). \hypertarget{inclusion_of_circle_bundles_into_higher_chromatic_cohomology}{}\subsubsection*{{Inclusion of circle $n$-bundles into higher chromatic cohomology}}\label{inclusion_of_circle_bundles_into_higher_chromatic_cohomology} By \hyperlink{SnatihTheorem}{Snaith's theorem} above there is a canonical map \begin{displaymath} B U(1) \to \mathbb{S}[B U(1)] \to KU \end{displaymath} that sends [[circle bundles]] to cocycles in [[topological K-theory]]. At the next level there is a canonical map \begin{displaymath} B^2 U(1) \to \mathbb{S}[B^2 U(1)] \to tmf \end{displaymath} that sends [[circle 2-bundles]] to [[tmf]]. See at \emph{\href{tmf#InclusionOfCircle2Bundles}{tmf -- Inclusion of circle 2-bundles}}. Write $gl_1(K(n))$ for the [[∞-group of units]] of the (a) [[Morava K-theory]] spectrum. \begin{prop} \label{}\hypertarget{}{} For $p = 2$ and all $n \in \mathbb{N}$, there is an [[equivalence in an (infinity,1)-category|equivalence]] \begin{displaymath} Maps(B^{n+1}U(1), B gl_1(K(n))) \simeq \mathbb{Z}/(2) \end{displaymath} between the [[mapping space]] from the [[classifying space]] for [[circle n-bundle|circle (n+1)-bundles]] to the [[delooping]] of the [[∞-group of units]] of $K(n)$. \end{prop} (\hyperlink{SatiWesterland11}{Sati-Westerland 11, theorem 1}) \begin{remark} \label{}\hypertarget{}{} By the discussion at [[(∞,1)-vector bundle]] this means that for each such map there is a type of [[twisted cohomology|twist]] of Morava K-theory (at $p = 2$). \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[(∞,1)-vector bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A notion of spectrum of units of an $E_\infty$-ring was originally described in \begin{itemize}% \item [[Peter May]], \emph{$E_\infty$ ring spaces and $E_\infty$ ring spectra} Lecture Notes in Mathematics, Vol. 577. Springer-Verlag, Berlin, 1977. With contributions by [[Frank Quinn]], Nigel Ray, and J\o{}rgen Tornehave. \end{itemize} One explicit model was given in \begin{itemize}% \item [[Christian Schlichtkrull]], \emph{Units of ring spectra and their traces in algebraic K-theory}, Geom. Topol. 8(2004) 645-673 (\href{http://arxiv.org/abs/math/0405079}{arXiv:math/0405079}) \end{itemize} A general abstract discussion in [[stable (∞,1)-category]] theory is in \begin{itemize}% \item [[Charles Rezk]], section II of \emph{The units of a ring spectrum and a logarithmic cohomology operation}, J. Amer. Math. Soc. 19 (2006), 969-1014 (\href{http://arxiv.org/abs/math/0407022}{arXiv:math/0407022}) \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], [[Michael Hopkins]], [[Charles Rezk]], \emph{Units of ring spectra and Thom spectra} (\href{http://arxiv.org/abs/0810.4535}{arXiv:0810.4535}) \item [[Jacob Lurie]], construction 3.9.4 of \emph{Elliptic Cohomology I: Spectral Abelian Varieties} (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-I.pdf}{pdf}) \end{itemize} Remarks alluding to this are also on p. 20 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[A Survey of Elliptic Cohomology]]} \end{itemize} Theorem 3.2 there is proven using classical results which are collected in \begin{itemize}% \item [[Peter May]], \emph{What precisely are $E_\infty$-ring spaces and $E_\infty$-ring spectra?}, Geometry and Topology Monographs 16 (2009) 215--282 (\href{http://www.math.uchicago.edu/~may/PAPERS/Final1.pdf}{pdf}) \end{itemize} A survey of the situation in [[(∞,1)-category theory]] is also in section 3.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[A Survey of Elliptic Cohomology]]} \end{itemize} A construction in terms of a [[model structure on spectra]] is in \begin{itemize}% \item John Lind, \emph{Diagram spaces, diagram spectra, and spectra of units} (\href{http://arxiv.org/abs/0908.1092}{arXiv:0908.1092}) \end{itemize} A refinement of the construction of $\infty$-groups of units to [[augmented ∞-groups]] over the [[sphere spectrum]], such as to distinguish $gl_1$ of a [[periodic E-∞ ring]] from its connective cover, is in \begin{itemize}% \item [[Steffen Sagave]], \emph{Spectra of units for periodic ring spectra}, Algebr. Geom. Topol. 16 (2016) 1203-1251 (\href{http://arxiv.org/abs/1111.6731}{arXiv:1111.6731}) \end{itemize} based on (\hyperlink{Schlichtkrull04}{Schlichtkrull 04}). See also \begin{itemize}% \item [[Steffen Sagave]], [[Christian Schlichtkrull]], \emph{Diagram spaces and symmetric spectra}, Advances in Mathematics, Volume 231, Issues 3--4, October--November 2012, Pages 2116--2193 (\href{https://arxiv.org/abs/1103.2764}{arXiv:1103.2764}) \item [[Markus Szymik]], \emph{Brauer spaces for commutative rings and structured ring spectra} (\href{http://arxiv.org/abs/1110.2956}{arXiv:1110.2956}) \item [[Andrew Baker]], [[Birgit Richter]], [[Markus Szymik]], \emph{Brauer groups for commutative $\mathbb{S}$-algebras}, J. Pure Appl. Algebra 216 (2012) 2361--2376 (\href{http://arxiv.org/abs/1005.5370}{arXiv:1005.5370}) \end{itemize} The $\infty$-group of units of [[Morava K-theory]] is discussed in \begin{itemize}% \item [[Hisham Sati]], [[Craig Westerland]], \emph{Twisted Morava K-theory and E-theory} (\href{http://arxiv.org/abs/1109.3867}{arXiv:1109.3867}) \end{itemize} The [[cohomology]] with coefficients in $gl_1(E)$ and the corresponding [[logarithmic cohomology operations]] are discussed in \begin{itemize}% \item [[Charles Rezk]], \emph{The units of a ring spectrum and a logarithmic cohomology operation}, J. Amer. Math. Soc. 19 (2006), 969-1014 (\href{http://arxiv.org/abs/math/0407022}{arXiv:math/0407022}) \end{itemize} The group of units of [[tmf]] is analyzed from section 12 on in \begin{itemize}% \item [[Matthew Ando]], [[Mike Hopkins]], [[Charles Rezk]], \emph{Multiplicative orientations of KO-theory and the spectrum of topological modular forms}, 2010 (\href{http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf}{pdf}) \end{itemize} [[!redirects ∞-group of units]] [[!redirects ∞-groups of units]] [[!redirects infinity-groups of units]] \end{document}