\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{infinity-stack} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{derived_stacks}{Derived $\infty$-stacks}\dotfill \pageref*{derived_stacks} \linebreak \noindent\hyperlink{higher_stacks}{Higher $\infty$-stacks}\dotfill \pageref*{higher_stacks} \linebreak \noindent\hyperlink{quasicoherent_stacks}{Quasicoherent $\infty$-stacks}\dotfill \pageref*{quasicoherent_stacks} \linebreak \noindent\hyperlink{affine_stacks}{Affine $\infty$-stacks}\dotfill \pageref*{affine_stacks} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of, equivalently \begin{itemize}% \item \emph{$\infty$-stack}, \end{itemize} and specifically of \begin{itemize}% \item \emph{[[(∞,1)-sheaf]]}, \item \emph{[[geometric homotopy type]]} \end{itemize} is the $\infty$-[[vertical categorification|categorification]] of the notion of, equivalently \begin{itemize}% \item [[sheaf]] and [[stack]] \item [[geometric homotopy type]]. \end{itemize} Where a sheaf is a [[presheaf]] with values in [[Set]] that satisfies the sheaf condition, an [[higher category theory|∞-category]]-valued ([[pseudofunctor|pseudo]])[[presheaf]] is an \emph{$\infty$-stack} if it ``satisfies descent'' in that its assignment to a space $X$ is equivalent to its [[descent]] data for any [[cover]] or [[hypercover]] $Y^\bullet \to X$: if the canonical morphism \begin{displaymath} \mathbf{A}(X) \to Desc(Y^\bullet, \mathbf{A}) \end{displaymath} is an equivalence. This is the \emph{descent condition}. One important motivation for $\infty$-stacks is that they generalize the notion of [[Grothendieck topos]] from [[category theory|1-categorical]] to [[higher category theory|higher categorical context]]. This is a central [[motivation for sheaves, cohomology and higher stacks|motivation for considering higher stacks]]. They may also be thought of as [[internal ∞-groupoid]]s in a [[Grothendieck topos|sheaf topos]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A well developed theory exists for $\infty$-stacks that are sheaves with values in [[∞-groupoids]]. Given that ordinary sheaves may be thought of as sheaves of [[0-category|0-categories]] and that $\infty$-groupoid-values sheaves may be thought of as sheaves of [[(infinity,0)-category|(∞,0)-categories]], these may be called [[(infinity,1)-sheaf|(∞,1)-sheaves]]. In the case that these $\infty$-groupoids have vanishing [[homotopy groups]] above some degree $n$, these are sometimes also called [[sheaves of n-types|sheaf of n-types]]. The currently most complete picture of [[(infinity,1)-sheaf|(∞,1)-sheaves]] appears in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} but is based on a long development by other authors, some of which is indicated in the list of references below. With the general machinery of [[(∞,1)-category]] theory in place, the definition of the [[(infinity,1)-category of (infinity,1)-sheaves|(∞,1)-category of ∞-stacks]] is literally the same as that of a [[category of sheaves]]: it is a [[reflective (∞,1)-subcategory]] \begin{displaymath} \infty Stacks(C) \simeq Sh_\infty(C) \stackrel{\stackrel{\bar{(\cdot)}}{\leftarrow}}{\to} PSh_\infty(C) \end{displaymath} of the [[(infinity,1)-category of (infinity,1)-functors|(∞,1)-category of (∞,1)-presheaves]] with values in [[∞Grpd]], such that the left adjoint [[(∞,1)-functor]] $\bar {(\cdot)}$ -- the [[∞-stackification]] operation -- is left exact. One of the main theorems of [[Higher Topos Theory]] says that the old [[model structure on simplicial presheaves|model structures on simplicial presheaves]] are the canonical \begin{itemize}% \item [[models for ∞-stack (∞,1)-toposes]]. \end{itemize} This allows to regard various old technical results in a new conceptual light and provides powerful tools for actually handling $\infty$-stacks. In particular this implies that the old definition of [[abelian sheaf cohomology]] is secretly the computation of [[∞-stackification]] for $\infty$-stacks that are in the image of the [[Dold-Kan correspondence|Dold-Kan embedding]] of [[chain complex]]es of sheaves into [[simplicial presheaves|simplicial sheaves]]. \hypertarget{derived_stacks}{}\subsubsection*{{Derived $\infty$-stacks}}\label{derived_stacks} Notice that an $\infty$-stack is a [[(∞,1)-presheaf]] for which not only the codomain is an [[(∞,1)-category]], but where also the domain, the [[site]], may be an [[(∞,1)-category]]. To emphasize that one considers $\infty$-stacks on higher categorical sites one speaks of [[derived stacks]]. \hypertarget{higher_stacks}{}\subsubsection*{{Higher $\infty$-stacks}}\label{higher_stacks} The above concerns $\infty$-stacks with values in [[∞-groupoids]], i.e, [[(∞,0)-category|(∞,0)-categories]]. More generally there should be notions of $\infty$-stacks with values in [[(n,r)-category|(n,r)-categories]]. These are expected to be modeled by the [[model structure on homotopical presheaves]] with values in the category of [[Theta spaces]]. \hypertarget{quasicoherent_stacks}{}\subsubsection*{{Quasicoherent $\infty$-stacks}}\label{quasicoherent_stacks} An archetypical class of examples of $\infty$-stacks are [[quasicoherent ∞-stack]]s of [[module]]s, being the [[vertical categorification|categorification]] of the notion of [[quasicoherent sheaf]]. By their nature these are really $(\infty,1)$-stacks in that they take values not in [[∞-groupoid]]s but in [[(∞,1)-categories]], but often only their [[∞-groupoid]]al [[core]] is considered. \hypertarget{affine_stacks}{}\subsubsection*{{Affine $\infty$-stacks}}\label{affine_stacks} In \begin{itemize}% \item [[Bertrand Toen]], \emph{Affine stacks (Champs affines)} (\href{http://arxiv.org/abs/math/0012219}{arXiv:math/0012219}) \end{itemize} for the [[site]] $C = Alg_k^{op}$ with a suitable topology a [[Quillen adjunction]] \begin{displaymath} \mathcal{O} : sPSh(C)_{loc} \stackrel{\leftarrow}{\to} [\Delta^{op},Alg_k] \simeq dgAlg_k^{+} : Spec \end{displaymath} is presented, where $\mathcal{O}$ sends and $\infty$-stack to its global [[dg-algebra]] of functions and $Spec$ constructs the simplicial presheaf ``represented'' degreewise by a cosimplicial algebra (under the [[monoidal Dold-Kan correspondence]] these are equivalent to dg-algebras). An $\infty$-stack in the image of $Spec : dgAlg_k^+ \to sPSh(C)$ is an \textbf{affine $\infty$-stack}. The image of an arbitrary $\infty$-stack under the composite \begin{displaymath} Aff : sPSh(C) \stackrel{\mathcal{O}}{\to} dgAlg_k^+ \stackrel{Spec}{\to} sPSh(C) \end{displaymath} is its \textbf{affinization}. This notion was considered in the full [[(∞,1)-category]] picture in \begin{itemize}% \item [[David Ben-Zvi]], [[David Nadler]], \emph{Loop Spaces and Connections} (\href{http://arxiv.org/abs/1002.3636}{arXiv:math/1002.3636}) \end{itemize} where it is also generalized to [[derived stack]]s, i.e. to the [[(∞,1)-site]] $dgAlg_k^-$ of cochain [[dg-algebra]]s in non-positive degree, where the pair of [[adjoint (∞,1)-functor]]s is \begin{displaymath} \mathcal{O} : Sh_{(\infty,1)}((dgAlg_k^-)^{op}) \stackrel{\leftarrow}{\to} [\Delta^{op},dgAlg_k^-] \simeq dgAlg_k : Spec \end{displaymath} with $\mathcal{O}$ taking values in \emph{unbounded} dg-algebras. In detail, $\mathcal{O}$ acts as follows: every [[∞-stack]] $X$ may be written as a ([[homotopy colimit|colimit]]) over [[representable functor|representable]] $Spec A_i \in dgAlg_i$ \begin{displaymath} X \simeq \lim_{\to^i} Y(Spec A_i) \,, \end{displaymath} where $Y : (dgAlg^-)^{op} \to \mathbf{H}$ is the [[(∞,1)-Yoneda embedding]]. The functor $\mathcal{O}$ takes any such colimit-description, and simply reinterprets the colimit in $dgAlg^{op}$, i.e. the limit in $dgAlg$: \begin{displaymath} \mathcal{O}(X) = \lim_{\leftarrow^i} A_i \,. \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[sheaf]] \item [[2-sheaf]] / [[stack]] \item [[(∞,1)-sheaf]] / \textbf{$\infty$-stack}, \begin{itemize}% \item [[sheaf of spectra]] \item [[sheaf of L-∞ algebras]] \end{itemize} \item [[(∞,2)-sheaf]] \item [[(∞,n)-sheaf]] \end{itemize} [[!include homotopy n-types - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The study of $\infty$-stacks is known in parts as the study of [[nonabelian cohomology]]. See there for further references. The search for $\infty$-stacks probably began with [[Alexander Grothendieck]] in \emph{[[Pursuing Stacks]]}. The notion of $\infty$-stacks can be set up in various notions of $\infty$-categories. [[Andre Joyal]], Jardine, [[Bertrand Toen]] and others have developed the theory of $\infty$-stacks in the context of [[simplicial presheaf|simplicial presheaves]] and also in [[Segal category|Segal categories]]. \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]]; \emph{Homotopical algebraic geometry. I. Topos theory}, Adv. Math. 193 (2005), no. 2, 257--372, \href{http://dx.doi.org/10.1016/j.aim.2004.05.004}{doi}, \emph{Homotopical Algebraic Geometry II: geometric stacks and applications}, \href{http://front.math.ucdavis.edu/0404.5373}{math.AG/0404373} \item [[Bertrand Toën]], [[Gabriele Vezzosi]]; \emph{Segal topoi and stacks over Segal categories}, \href{http://arxiv.org/abs/math.AG/0212330}{math.AG/0212330}. \item [[Bertrand Toën]]; \emph{Higher and derived stacks: a global overview} (\href{http://arxiv.org/abs/math.AG/0604504}{arXiv}). \end{itemize} This concerns $\infty$-stacks with values in [[∞-groupoids]], i.e. $(\infty,0)$-categories. More generally [[descent]] conditions for $n$-stacks and $(\infty,n)$-stacks with values in [[(infinity,n)-category|(∞,n)-categories]] have been earlier discussed in \begin{itemize}% \item [[Andre Hirschowitz]], [[Carlos Simpson]]; \emph{Descente pour les $n$-champs} (\href{http://arxiv.org/abs/math/9807049}{arXiv}) \end{itemize} All this has been embedded into a coherent global theory in the setting of [[quasicategory|quasicategories]] in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects infinity-stacks]] [[!redirects ∞-stack]] [[!redirects ∞-stacks]] [[!redirects infinity stack]] \end{document}