\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{infinity-stack homotopically} [[!redirects ∞-stack homotopically]] This entry is about models/presentations for an [[(infinity,1)-category of (infinity,1)-sheaves]] in terms of [[model category|model categories]] of $\infty$-presheaves, in particular in terms of the Brown-Joyal-Jardine [[model structure on simplicial presheaves]]. For other notions see [[infinity-stack]] and in general see [[Higher Topos Theory]]. \hypertarget{idea}{}\section*{{Idea}}\label{idea} From one perspective, [[sheaf|sheaves]], [[stack|stacks]], [[infinity-stack|infinity-stacks]] on a given site $S$ with their [[descent]] conditions are nothing but a way of talking about the [[infinity-category]] of [[infinity-category|infinity-categories]] modeled on $S$, in the sense of [[space and quantity]]: the $\infty$-category of $\infty$-category-valued [[presheaf|presheaves]]/[[sheaf|sheaves]] on $S$. In particular, the all-important [[descent]] condition is from this perspective nothing but the condition that the [[Yoneda lemma]] extends to respect higher categorical [[equivalence|equivalences]]: for $X \in S$ a representable $\infty$-category valued presheaf, $Y \stackrel{\simeq}{\to} X$ a weakly equivalent replacement of $X$, descent says that the usual statement of the [[Yoneda lemma]] for an $\infty$-category valued presheaf $\mathbf{A}$ -- that $[X,\mathbf{A}] \simeq \mathbf{A}(X)$ -- extends along the weak equivalence to yield also $\cdots \simeq [Y,\mathbf{A}]$. The $\infty$-category valued presheaves satisfying this condition represent the objects in the proper $\infty$-category of $\infty$-category valued presheaves/sheaves, which is usefully conceived as a suitable [[enriched homotopy theory|enriched homotopy category]]: these are the \emph{$\infty$-stacks.} Switching back perspective from presheaves to spaces, and reading the Yoneda lemma as the consistency condition on this interpretation (as indicated at [[Yoneda lemma]]), this says that $\infty$-stacks on a site $S$ are nothing but $\infty$-categories consistently modeled on $S$. For instance a 0-stack=[[sheaf]] modeled on $S =$[[Diff]] may be a [[generalized smooth space]], while a 1-stack=[[stack]] modeled on [[Diff]] may be a [[differentiable stack]] representing a [[Lie groupoid|smooth groupoid]]. Instead of committing the following discussion to a fixed model for [[infinity-category|infinity-categories]] or [[omega-category|omega-categories]] I describe the situation in a setup which aims to come close to making the minimum number of necessary assumptions on the ambient context. After discussing the general idea I give concrete examples in concrete realizations of $\infty$-categorical contexts. \hypertarget{setup_in_enriched_homotopy_theory}{}\section*{{Setup in enriched homotopy theory}}\label{setup_in_enriched_homotopy_theory} In the context of [[enriched homotopy theory]] we assume that our model for [[infinity-category|infinity-categories]] can be thought of as \begin{enumerate}% \item [[space and quantity|generalized spaces modeled on]] the objects in a [[locally small category]], and \item such that there is a good notion of [[homotopy]] between maps into these spaces; \end{enumerate} By the yoga of [[space and quantity]] the first point means that our infinity-categories are [[presheaf|presheaves]] on a [[locally small category]] $S$. By the yoga of [[enriched homotopy theory]] the second point means that these presheaves take values in a [[closed monoidal homotopical category]]. So let \begin{itemize}% \item $S$ be a [[site]]; \item $V$ be a [[closed monoidal homotopical category]]; \item $C := Sh(S,V)$ be the category of $V$-valued [[sheaf|sheaves]] on $S$ such that it becomes a $V$-[[enriched homotopical category]] with some induced (usually local) notion of weak equivalences. \end{itemize} \hypertarget{remark}{}\subsection*{{Remark}}\label{remark} From this $V$-enriched perspective it is natural to generalize to the case where the site $S$ is not just locally small, i.e. enriched over $Sets$, but is enriched over $V$ itself. If one does this one speaks of [[derived stack|derived]] $\infty$-stacks. \vspace{.5em} \hrule \vspace{.5em} The $V$-[[enriched homotopical category]] $C$ is our generic model for an $\infty$-category of [[infinity-category|infinity-categories]] modeled on $S$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Let $S = pt$ be the terminal category so that $C = V$ and take $V$ to be any of the examples listed at [[monoidal model category]], such as [[Cat]], [[strict 2-category|2Cat]], probably [[strict omega-category|omegaCat]] (but here the [[pushout-product axiom]] still needs to be checked), or [[simplicial set|SimpSet]]. Even though for such simple $S$ there is no nontrivial ``topology'' in the game, the notion of descent resulting from this setup is still interesting: it encodes for instance [[nonabelian cohomology]] of finite (really: discrete) groups, $\infty$-groups, $\infty$-[[infinity-groupoid|groupoids]]. \end{itemize} In all of the following examples notice that if one wants to take the site $S$ to be something like [[Top]] or [[Diff]], as one often does, then one needs to beware of the size issues of sheaves on [[large site|large sites]]. \begin{itemize}% \item [[simplicial presheaf|Simplicial presheaves]], using the [[model structure on simplicial presheaves]] or the [[model structure on simplicial sheaves]]: If $S$ is any site and $V =$ [[simplicial set|SimpSet]], then the natural notion of local weak equivalences in $Sh(S,V)$ are those morphisms $f : \mathbf{A} \to \mathbf{B}$ which induce isomorphisms of sheaves of simplicial homotopy groups under all functors $\pi_n : SimpSet \to Groups$. If $S$ has enough points (such as the site of open sets of a topological space), then this is equivalent to $f$ being a stalkwise weak equivalence of simplicial sets, using the [[model structure on simplicial sets]] (see for instance section 1 of \href{http://intlpress.com/HHA/v3/n2/a5/v3n2a5.pdf}{JardStackSSh}). Then I think that the $Ho_V$-enriched category $Ho_C$ is the $SimpSet$-enriched homotopy category of simplicial presheaves that is discussed in \hyperlink{ToenSNAC}{ToenSNAC} and \hyperlink{ToenHDS}{ToenHDS}. \item Let $S =$ [[Diff]] and with its standard [[Grothendieck topology]] and $V =$ [[strict omega-category|omegaCat]]. The $C$ is the model for smooth $\infty$-categories used in [[schreiber:Differential Nonabelian Cohomology]]. \item Restrict $V$ either from [[simplicial set]]s to [[Kan complex]]es or from [[strict omega-category|strict omega-categories]] to [[omega-groupoid]]s hence equivalently to [[crossed complex]]es and then further to complexes of abelian groups to make contact, below, with ordinary notions of sheaf cohomology. \end{itemize} \hypertarget{the_enriched_homotopy_category}{}\section*{{The enriched homotopy category}}\label{the_enriched_homotopy_category} The $Ho_V$-[[enriched category]] $Ho_C$ is now our model for the $\infty$-category if $\infty$-categories modeled on $S$. The claim is: \begin{itemize}% \item $\infty$-stacks on $S$ are nothing but the objects in $Ho_C$; \item the [[descent]] condition on these morphisms is an extension of the statement of the [[Yoneda lemma]] -- which says that for $X \in S \subset C$ a space and $Y \in C$ a [[cover]] $Y \stackrel{\simeq}{\to} X$ we have $[X,\mathbf{A}] \simeq \mathbf{A}(X)$ -- extends to a statement which respects the weak equivalence $Y \stackrel{\simeq}{\to} X$ in that also \begin{displaymath} \mathbf{A}(X) \stackrel{\simeq}{\to} Desc(Y,\mathbf{A}) := [Y,\mathbf{A}]$$; \end{displaymath} \item the morphisms of $Ho_C$ are (of course) computed by the [[derived functor|right-derived Hom-functor]] in $C$ \begin{displaymath} R Hom : C^op \times C \to V \end{displaymath} and \begin{itemize}% \item for fixed $X \in S$ the functor \begin{displaymath} R Hom(X, -) : Sh(S,V) \to V \end{displaymath} is the functor which computes sheaf cohomology in the form of being the right-derived functor of the global section functor; \item for fixed $\mathbf{A} \in Sh(S,V)$ the functor \begin{displaymath} R Hom(-, \mathbf{A}) \end{displaymath} is the functor which computes sheaf cohomology of the sheaf $\mathbf{A}$ in the form of ech cohomology (by mapping out of $\infty$-categorical resolutions aka \emph{hypercovers} of a space $X$). \end{itemize} \end{itemize} \hypertarget{examples_2}{}\subsection*{{Examples}}\label{examples_2} \begin{itemize}% \item for $S = pt$, $V =$ [[crossed complex|CrossedComplexes]]: this is the context of results about cohomology in [[nonabelian algebraic topology]]; \item for $V =$ [[simplicial set|SimpSet]] these are pretty much the statements in \hyperlink{ToenHDS}{ToenHDS}: \begin{itemize}% \item $C$ is the category of simplicial sheaves on $S$ (middle of p. 11); \item the right derived $(V =SimpSet)$-enriched Hom is denoted there $Map(F,G) := R Hom(F,G)$ (for instance middle of p. 14) \item sheaf cohomology is reproduced as indicated, for instance p. 7 of \hyperlink{ToenSNAC}{ToenSNAC}. \end{itemize} \end{itemize} \ldots{} \hypertarget{references}{}\section*{{References}}\label{references} \begin{itemize}% \item \textbf{JardStackSSh} -- J. Jardine, \emph{Stacks and the homotopy theory of simplicial sheaves}, Homology, homotopy and applications, vol. 3(2), 2001 p. 361-284 (\href{http://intlpress.com/HHA/v3/n2/a5/v3n2a5.pdf}{pdf}) \item \textbf{JardSimpSh} -- J. Jardine, \emph{Fields Lectures: Simplicial presheaves} (\href{http://www.math.uwo.ca/~jardine/papers/Fields-01.pdf}{pdf}) \end{itemize} \begin{itemize}% \item \textbf{ToenSNAC} -- B. To\"e{}n, [[ToenStacksNAC.pdf:file]] \end{itemize} \begin{itemize}% \item \textbf{ToenHDS} -- B. To\"e{}n, \emph{Higher and derived stacks: a global overview} (\href{http://arxiv.org/abs/math.AG/0604504}{arXiv}) \end{itemize} \end{document}