\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{initial algebra of an endofunctor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{induction}{}\paragraph*{{Induction}}\label{induction} [[!include induction - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_algebras_over_a_monad}{Relation to algebras over a monad}\dotfill \pageref*{relation_to_algebras_over_a_monad} \linebreak \noindent\hyperlink{LambeksTheorem}{Lambek's theorem}\dotfill \pageref*{LambeksTheorem} \linebreak \noindent\hyperlink{AdameksTheorem}{Ad\'a{}mek's theorem}\dotfill \pageref*{AdameksTheorem} \linebreak \noindent\hyperlink{semantics_for_inductive_types}{Semantics for inductive types}\dotfill \pageref*{semantics_for_inductive_types} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{NaturalNumbers}{Natural numbers}\dotfill \pageref*{NaturalNumbers} \linebreak \noindent\hyperlink{more_examples}{More examples}\dotfill \pageref*{more_examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An \textbf{initial [[algebra for an endofunctor|algebra]]} for an [[endofunctor]] $F$ on a [[category]] $C$ is an [[initial object]] in the category of [[algebra over an endofunctor|algebras]] of $F$. These play a role in particular as the [[categorical semantics]] for [[inductive types]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_algebras_over_a_monad}{}\subsubsection*{{Relation to algebras over a monad}}\label{relation_to_algebras_over_a_monad} The concept of an [[algebra of an endofunctor]] is arguably somewhat odd, a more natural concept being that of an [[algebra over a monad]]. However, the former can often be reduced to the latter. \begin{prop} \label{}\hypertarget{}{} If $\mathcal{C}$ is a [[complete category]], then the [[category]] of [[algebras of an endofunctor]] $F : \mathcal{C} \to \mathcal{C}$ is [[equivalence of categories|equivalent]] to the category of [[algebras over a monad]] of the [[free monad]] on $F$, if the latter exists. \end{prop} The proof is fairly straightforward, see for instance (\hyperlink{Maciej}{Maciej}) or at [[free monad]]. The existence of free monads, on the other hand, can be a tricky question. One general technique is the [[transfinite construction of free algebras]]. \hypertarget{LambeksTheorem}{}\subsubsection*{{Lambek's theorem}}\label{LambeksTheorem} \begin{theorem} \label{}\hypertarget{}{} If $F$ has an initial algebra $\alpha: F(X) \to X$, then $X$ is [[isomorphism|isomorphic]] to $F(X)$ via $\alpha$. \end{theorem} \begin{remark} \label{}\hypertarget{}{} In this sense, $X$ is a fixed point of $F$. Being initial, $X$ is the \emph{smallest} fixed point of $F$ in that there is a map from $X$ to any other fixed point (indeed, any other algebra), and this map is an [[injection]] if $C$ is [[Set]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} The dual concept is [[terminal coalgebra]], which is the \emph{largest} fixed point of $F$. \end{remark} \begin{proof} Given an initial algebra structure $\alpha: F(X) \to X$, define an algebra structure on $F(X)$ to be $F(\alpha): F(F(X)) \to F(X)$. By initiality, there exists an $F$-algebra map $i: X \to F(X)$, so that \begin{displaymath} \itexarray{ F(X) & \overset{F(i)}{\to} & F(F(X)) \\ \alpha \downarrow & & \downarrow F(\alpha) \\ X & \underset{i}{\to} & F(X) } \end{displaymath} commutes. Now it is trivial, in fact tautological that $\alpha$ is itself an $F$-algebra map $F(X) \to X$. Thus $\alpha \circ i = 1_X$, since both sides of the equation are $F$-algebra maps $X \to X$ and $X$ is initial. As a result, $F(\alpha) \circ F(i) = 1_{F(X)}$, so that $i \circ \alpha = 1_{F(X)}$ according to the commutative square. Hence $\alpha$ is an isomorphism, with inverse $i$. \end{proof} \hypertarget{AdameksTheorem}{}\subsubsection*{{Ad\'a{}mek's theorem}}\label{AdameksTheorem} In many cases, initial algebras can be constructed in [[recursion|recursive]] fashion, using the following special case of a theorem due to Ad\'a{}mek. \begin{theorem} \label{AdameksTheorem}\hypertarget{AdameksTheorem}{} Let $C$ be a category with an [[initial object]] $0$ and [[transfinite composition]] of length $\omega$, hence [[colimits]] of sequences $\omega \to C$ (where $\omega$ is the first infinite [[ordinal]]), and suppose $F: C \to C$ preserves colimits of $\omega$-chains. Then the colimit $\gamma$ of the chain \begin{displaymath} 0 \overset{i}{\to} F(0) \overset{F(i)}{\to} \ldots \to F^{(n)}(0) \overset{F^{(n)}(i)}{\to} F^{(n+1)}(0) \to \ldots \end{displaymath} carries a structure of initial $F$-algebra. \end{theorem} \begin{proof} The $F$-algebra structure $F\gamma \to \gamma$ is inverse to the canonical map $\gamma \to F\gamma$ out of the colimit (which is invertible by the hypothesis on $F$). The proof of initiality may be extracted by dualizing the corresponding proof given at [[terminal coalgebra]]. \end{proof} This approach can be generalized to the [[transfinite construction of free algebras]]. \hypertarget{semantics_for_inductive_types}{}\subsubsection*{{Semantics for inductive types}}\label{semantics_for_inductive_types} Initial algebras of endofunctors are the [[categorical semantics]] of [[extensional type theory|extensional]] [[inductive types]]. The generalization to [[weak initial]] algebras captures the notion in [[intensional type theory]] and [[homotopy type theory]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{NaturalNumbers}{}\subsubsection*{{Natural numbers}}\label{NaturalNumbers} The archetypical example of an initial algebra is the set of [[natural numbers]]. \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{T}$ be [[topos]] and let $F : \mathcal{T} \to \mathcal{T}$ the functor given by \begin{displaymath} F : X \mapsto * \coprod X \end{displaymath} (hence the functor underlying the ``[[maybe monad]]''). Then an initial algebra over $F$ is precisely a [[natural number object]] $\mathbb{N}$ in $\mathcal{T}$. \end{prop} \begin{proof} By definition, an $F$-algebra is an object $X$ equipped with a morphism \begin{displaymath} (0,s) : * \coprod X \to X \,, \end{displaymath} hence equivalently with a [[pointed object|point]] $0 : * \to X$ and an [[endomorphism]] $s : X \to X$. This being inital means that for $(0_Y, s_Y) : * \coprod Y \to Y$ any other morphism, there is a unique morphism $f : X \to Y$ such that the [[diagram]] \begin{displaymath} \itexarray{ * &\stackrel{0}{\to}& X &\stackrel{s}{\to}& X \\ \downarrow && \downarrow^{\mathrlap{f}} && \downarrow^{\mathrlap{f}} \\ * &\stackrel{0}{\to}& Y &\stackrel{s}{\to}& Y } \end{displaymath} commutes. This is the very definition of [[natural number object]] $X = \mathbb{N}$. \end{proof} \hypertarget{more_examples}{}\subsubsection*{{More examples}}\label{more_examples} Theorem \ref{AdameksTheorem} applies in particular to any functor $F: Set \to Set$ which is a [[colimit]] of finitely [[representable functors]] $hom(n, -): X \mapsto X^n$, as in the following examples. \begin{itemize}% \item Let $A$ be a set, and let $F: Set \to Set$ be the functor $F(X) = 1 + A \times X$. Then the initial $F$-algebra is $A^*$, the [[free monoid]] on $A$. The $F$-algebra structure is \begin{displaymath} (e, m| ): 1 + A \times A^* \to A^* \end{displaymath} where $e: 1 \to A^*$ is the identity and $m|: A \times A^* \to A^*$ is the restriction of the monoid multiplication along the evident inclusion $i \times 1: A \times A^* \to A^* \times A^*$. This ``fixed point'' of $F$ can be thought of as the result of the (slightly nonsensical) calculation \begin{displaymath} 1 + A \times X = X \Rightarrow X = \frac1{1 - A} = 1 + A + A^2 + \ldots = A^* \end{displaymath} which can be made rigorous by interpreting the initial equality as defining the solution $X$ by recursion, and applying the theorem above. \item Let $F: Set \to Set$ be the functor $F(X) = 1 + X^2$. Then the initial $F$-algebra is the set $T$ of isomorphism classes of finite (planar, rooted) binary [[trees]]. The $F$-algebra structure is \begin{displaymath} (r, j): 1 + T^2 \to T \end{displaymath} where $r: 1 \to T$ names the tree consisting of just a root vertex, and $j: T^2 \to T$ creates a tree $t \vee t'$ from two trees $t$, $t'$ by joining their roots to a new root, so that the root of $t$ becomes the left child and the root of $t'$ the right child of the new root. The recursive equation \begin{displaymath} T = 1 + T^2 \end{displaymath} would seem to imply that the structure $T$ behaves something like a structural ``sixth root of unity'', and indeed the structural isomorphism $T \cong F(T)$ allows one to exhibit an isomorphism \begin{displaymath} T = T^7 \end{displaymath} constructively, as famously explored in the paper by Andreas Blass, [[seven trees in one]]. \item Let $F: Set \to Set$ be the functor $F(X) = X^*$ (the free monoid from an earlier example). Then the initial $F$-algebra is the set of isomorphism classes of finite planar rooted [[trees]] (not necessarily binary as in the previous example). \item Let $C$ be the [[coslice category]] $\mathbb{Z} \downarrow Ab$, and let $F: C \to C$ be the functor which pushes out along the multiplication-by-$p$ map $p \cdot -: \mathbb{Z} \to \mathbb{Z}$. Then the initial $F$-algebra is the [[Pruefer group]] $\mathbb{Z}[p^{-1}]/\mathbb{Z}$. See the discussion at the n-Category Caf\'e{}, starting \href{http://golem.ph.utexas.edu/category/2008/11/coalgebraically_thinking.html#c020660}{here}. \item Let $Ban$ be the category of complex [[Banach spaces]] and maps of [[norm]] bounded above by $1$, and let $F: \mathbb{C} \downarrow Ban \to \mathbb{C} \downarrow Ban$ be the squaring functor $X \mapsto X \times X$. Then the initial $F$-algebra is $L^1([0, 1])$ (with respect to the usual [[Lebesgue measure]]). This result is due to [[Tom Leinster]]; see this \href{http://mathoverflow.net/questions/23143/what-theorem-constructs-an-initial-object-for-this-category-formerly-integrabi/78262#78262}{MathOverflow discussion}. \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[inductive type]], \textbf{initial algebra of an endofunctor} \item [[higher inductive type]], [[initial algebra of a presentable ∞-monad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A textbook account of the basic theory is in \href{http://www.andrew.cmu.edu/course/80-413-713/notes/chap10.pdf}{chapter 10} of \begin{itemize}% \item [[Steve Awodey]], \emph{Category theory} lecture notes (2011) (\href{http://www.andrew.cmu.edu/course/80-413-713/}{web}) \end{itemize} A brief review of some basics with an eye towards [[inductive types]] is in section 2 of \begin{itemize}% \item [[Steve Awodey]], [[Nicola Gambino]], [[Kristina Sojakova]], \emph{Inductive types in homotopy type theory} (\href{http://arxiv.org/abs/1201.3898}{arXiv:1201.3898}) \end{itemize} Discussion for [[homotopy type theory]] is in \begin{itemize}% \item [[Steve Awodey]], [[Nicola Gambino]], [[Kristina Sojakova]], \emph{Homotopy-initial algebras in type theory} (\href{http://arxiv.org/abs/1504.05531}{arXiv:1504.05531}) \end{itemize} The relation to [[free monads]] is discussed in \begin{itemize}% \item \href{http://maciejcs.wordpress.com/}{Maciej}, \emph{\href{http://maciejcs.wordpress.com/2012/04/17/free-monads-and-their-algebras/}{Free monads and their algebras}} \end{itemize} [[!redirects initial algebras of an endofunctor]] [[!redirects initial algebras of endofunctors]] [[!redirects initial algebra for an endofunctor]] [[!redirects initial algebras for an endofunctor]] [[!redirects initial algebras for endofunctors]] [[!redirects initial algebra over an endofunctor]] [[!redirects initial algebras over an endofunctor]] [[!redirects initial algebras over endofunctors]] \end{document}