\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{integrability of G-structures} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{DefinitionTraditional}{Traditional}\dotfill \pageref*{DefinitionTraditional} \linebreak \noindent\hyperlink{IntermOfDifferentialCohesion}{In higher differential cohesive geometry}\dotfill \pageref*{IntermOfDifferentialCohesion} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{existence_and_torsion}{Existence and torsion}\dotfill \pageref*{existence_and_torsion} \linebreak \noindent\hyperlink{in_terms_of_adapted_coordinate_systems}{In terms of adapted coordinate systems}\dotfill \pageref*{in_terms_of_adapted_coordinate_systems} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{ExampleComplexStructure}{Complex structure}\dotfill \pageref*{ExampleComplexStructure} \linebreak \noindent\hyperlink{ExampleSymplecticStructure}{Symplectic structure}\dotfill \pageref*{ExampleSymplecticStructure} \linebreak \noindent\hyperlink{ExamplesOrthogonalStructure}{Orthogonal structure}\dotfill \pageref*{ExamplesOrthogonalStructure} \linebreak \noindent\hyperlink{UnitaryStructure}{Unitary structure}\dotfill \pageref*{UnitaryStructure} \linebreak \noindent\hyperlink{ExampleG2Structure}{$G_2$-Structure}\dotfill \pageref*{ExampleG2Structure} \linebreak \noindent\hyperlink{further_examples}{Further examples}\dotfill \pageref*{further_examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} Given a [[G-structure]], it is \emph{integrable} or \emph{locally flat} if over [[germs]] it restricts to the canonical (trivial) $G$-structure. If it restricts to the canonical structure only over order-$k$ [[infinitesimal disks]], then it is called \emph{order $k$ integrable}. The [[obstruction]] to first-order integrability is the [[torsion of a G-structure]], and hence first-order integrable $G$-structures are also called \emph{torsion-free $G$-structures}. Beware that some authors use the term ``integrable'' for ``torsion-free''. This originates in concentration on the case of [[almost symplectic structure]], i.e. $G$-structure for $G = Sp(2n)$ the [[symplectic group]], in which case the [[Darboux theorem]] gives that first order integrability (to [[symplectic structure]]) already implies full integrability. However, in general this is not the case. For instance for [[orthogonal structure]], i.e. $G$-structure for $G = O(n)$ the [[orthogonal group]], then the [[fundamental theorem of Riemannian geometry]] gives that the torsion obstruction to first-order integrability vanishes, exhibited by the [[Levi-Civita connection]], but full integrability here is equivalent to this being a [[flat connection]], which is a strong additional constraint. This is the case from which the terminology ``locally flat'' for ``integrable'' derives from. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{DefinitionTraditional}{}\subsubsection*{{Traditional}}\label{DefinitionTraditional} Let $V$ be a linear local model space, e.g. a [[vector space]] in plain [[differential geometry]] or [[super vector space]] in [[supergeometry]], etc.. Write $GL(V)$ for its [[general linear group]]. Consider a [[group]] [[homomorphism]] $G \longrightarrow GL(V)$. Write $\mathbf{c}_0$ for the \emph{standard flat $G$-structure} on $V$ (see at \emph{\href{G-structure#TheStandardFlatGStructure}{G-Structure -- Examples -- Standard flat G-structure}}). \begin{defn} \label{}\hypertarget{}{} A [[G-structure]] $\mathbf{c}$ on a [[manifold]] $X$ modeled on $V$ (e.g. a [[smooth manifold]] or [[supermanifold]]) is called integrable if \begin{enumerate}% \item there exists [[cover]] $\{U_i \hookrightarrow X\}$ by [[open subsets]] $U_i \hookrightarrow V$; \item such that the $G$-structure $\mathbf{c}$ on $X$ restricts on each patch to the default $G$-structure $\mathbf{c}_0$ on $V$: \begin{displaymath} \mathbf{c}|_{U_i} \simeq \mathbf{c}_0|_{U_i} \,. \end{displaymath} \end{enumerate} \end{defn} This is due to (\hyperlink{Sternberg64}{Sternberg 64, section VII, def. 2.4}, \hyperlink{Guillemin65}{Guillemin 65, section 3}). For review see also (\hyperlink{Alekseevskii}{Alekseevskii}, \hyperlink{Lott90}{Lott 90, page 4 of the exposition}). \begin{remark} \label{}\hypertarget{}{} More concretely, if $G$-structure is modeled by $G$-subbundles $P$ of the [[frame bundle]] (as discussed at \emph{\href{G-structure#InTermsOfSubbundlesOfTheFrameBundle}{G-structure -- In terms of subbundles of the frame bundle}} ), then it is integrable if each $P \hookrightarrow Fr(X)$ restricts on each patch to $P_0 \hookrightarrow Fr(V)$ \begin{displaymath} \itexarray{ P_0|_{U_i} &\hookrightarrow& Fr(V)|_{U_i} \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow \\ P|_{U_i} &\hookrightarrow& Fr(X)|_{U_i} } \,. \end{displaymath} \end{remark} \begin{defn} \label{}\hypertarget{}{} For $k \in \mathbb{N}$, a [[G-structure]] $\mathbf{c}$ on a [[manifold]] $X$ modeled on $V$ (e.g. a [[smooth manifold]] or [[supermanifold]]) is called \emph{order-$k$ infinitesimally integrable} if at each point $x \in X$ its restriction to the order-$k$ [[infinitesimal neighbourhood]] $\mathbb{D}^V_0 \simeq \mathbb{D}_x^X \hookrightarrow X$ is equal to the default $G$-structure $\mathbf{c}_0$. \end{defn} (\hyperlink{Guillemin65}{Guillemin 65, section 4}) \hypertarget{IntermOfDifferentialCohesion}{}\subsubsection*{{In higher differential cohesive geometry}}\label{IntermOfDifferentialCohesion} One may formalize the concept of integrable $G$-structure in the generality of [[higher differential geometry]], formalized in [[differential cohesion]]. See also there at \emph{\href{differential+cohesive+%28infinity%2C1%29-topos#structures}{differential cohesion -- G-Structure}}. Let $V$ be framed, def. \ref{Framing}, let $G$ be an [[∞-group]] and $G \to GL(V)$ a homomorphism, hence \begin{displaymath} G\mathbf{Struc}\colon \mathbf{B}G \longrightarrow \mathbf{B}GL(V) \end{displaymath} a morphism between the [[deloopings]]. \begin{defn} \label{GStructure}\hypertarget{GStructure}{} For $X$ a $V$-manifold, def. \ref{Manifold}, a \textbf{[[G-structure]]} on $X$ is a lift of the structure group of its [[frame bundle]], def. \ref{FrameBundleMap}, to $G$, hence a diagram \begin{displaymath} \itexarray{ X && \longrightarrow&& \mathbf{B}G \\ & {}_{\mathllap{\tau_X}}\searrow && \swarrow_{\mathrlap{G\mathbf{Struc}}} \\ && \mathbf{B}GL(V) } \end{displaymath} hence a morphism \begin{displaymath} \mathbf{c} \colon \tau_X \longrightarrow G\mathbf{Struc} \end{displaymath} is the [[slice (∞,1)-topos]]. \end{defn} In fact $G\mathbf{Struc}\in \mathbf{H}_{/\mathbf{B}GL(n)}$ is the [[moduli ∞-stack]] of such $G$-structures. The double [[slice (∞,1)-topos|slice]] $(\mathbf{H}_{/\mathbf{B}GL(n)})_{/G\mathbf{Struc}}$ is the [[(∞,1)-category]] of such $G$-structures. \begin{example} \label{TrivialGStructure}\hypertarget{TrivialGStructure}{} If $V$ is framed, def. \ref{Framing}, then it carries the trivial $G$-structure, which we denote by \begin{displaymath} \mathbf{c}_0 \colon \tau_{V} \longrightarrow G\mathbf{Struc} \,. \end{displaymath} \end{example} \begin{defn} \label{IntegrableGStructure}\hypertarget{IntegrableGStructure}{} For $V$ framed, def. \ref{Framing}, and $X$ a $V$-manifold, def. \ref{Manifold}, then $G$-structure $\mathbf{c}$ on $X$ is \emph{[[integrability of G-structure|integrable]]} (or \emph{locally flat}) if there exists a $V$-cover \begin{displaymath} \itexarray{ && U \\ & \swarrow && \searrow \\ V && && X } \end{displaymath} such that the [[correspondence]] of [[frame bundles]] induced via remark \ref{FrameBundlesFunctorial} \begin{displaymath} \itexarray{ && \tau_U \\ & \swarrow && \searrow \\ \tau_V && && \tau_X } \end{displaymath} (a diagram in $\mathbf{H}_{/\mathbf{B}GL(V)}$) extends to a sliced correspondence between $\mathbf{c}$ and the trivial $G$-structure $\mathbf{c}_0$ on $V$, example \ref{TrivialGStructure}, hence to a diagram in $\mathbf{H}_{/\mathbf{B}GL(V)}$ of the form \begin{displaymath} \itexarray{ && \tau_U \\ & \swarrow && \searrow \\ \tau_V && \swArrow_{\mathrlap{\simeq}} && \tau_X \\ & {}_{\mathllap{\mathbf{c}_0}}\searrow && \swarrow_{\mathrlap{\mathbf{c}}} \\ && G\mathbf{Struct} } \end{displaymath} On the other hand, $\mathbf{c}$ is called \emph{infinitesimally integrable} (or \emph{torsion-free}) if such an extension exists (only) after restriction to all [[infinitesimal disks]] in $X$ and $U$, hence after composition with the [[counit of a comonad|counit]] \begin{displaymath} \flat^{rel} U \longrightarrow U \end{displaymath} of the [[relative flat modality]], def. \ref{InducedRelativeShapeAndFlat}: \begin{displaymath} \itexarray{ && \tau_{\flat^{rel} U} \\ & \swarrow && \searrow \\ \tau_V && \swArrow_{\mathrlap{\simeq}} && \tau_X \\ & {}_{\mathllap{\mathbf{c}_0}}\searrow && \swarrow_{\mathrlap{\mathbf{c}}} \\ && G\mathbf{Struct} } \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} As before, if the given [[reduction modality]] encodes order-$k$ infinitesimals, then the infinitesimal integrability in def. \ref{IntegrableGStructure} is order-$k$ integrability. For $k = 1$ this is [[torsion of a G-structure|torsion-freeness]]. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{existence_and_torsion}{}\subsubsection*{{Existence and torsion}}\label{existence_and_torsion} The [[obstruction]] for a $G$-structure to be integrable to first order is its [[torsion of a G-structure]]. \hypertarget{in_terms_of_adapted_coordinate_systems}{}\subsubsection*{{In terms of adapted coordinate systems}}\label{in_terms_of_adapted_coordinate_systems} A $G$-structure on $X$ is integrable previsely if there exists an [[atlas]] of $X$ by [[coordinate charts]] with the property that their canonical [[frame fields]] are $G$-frames. (\hyperlink{Sternberg64}{Sternberg 64, section VII, exercise 2.1}) \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{itemize}% \item \hyperlink{ExampleComplexStructure}{Complex structure} \item \hyperlink{ExampleSymplecticStructure}{Symplectic structire} \item \hyperlink{ExamplesOrthogonalStructure}{Orthogonal structure} \item \hyperlink{ExampleG2Structure}{G2-structure} \end{itemize} \hypertarget{ExampleComplexStructure}{}\subsubsection*{{Complex structure}}\label{ExampleComplexStructure} A $GL(n,\mathbb{C}) \to GL(2n,\mathbb{R})$-[[G-structure|structure]] is an \emph{[[almost complex structure]]}. Its [[torsion of a G-structure]] vanishes precisely if its [[Nijenhuis tensor]] vanishes, hence, by the [[Newlander-Nirenberg theorem]], precisely if it is a [[complex structure]]. Since a [[complex manifold]] admits holomorphic [[coordinate charts]], this first-order integrability already implies full integrability. \hypertarget{ExampleSymplecticStructure}{}\subsubsection*{{Symplectic structure}}\label{ExampleSymplecticStructure} An $Sp(n) \hookrightarrow GL(2n)$-[[G-structure|structure]] is an \emph{[[almost symplectic structure]]}. Its [[torsion of a G-structure]] is the [[de Rham differential]] $\mathbf{d}\omega$ of the corresponding 2-form $\omega$ (recalled e.g. in \href{symplectic+manifold#AlbuquerquePicken11}{Albuquerque-Picken 11}). Hence first-order integrability here amounts precisely to [[symplectic structure]]. The [[Darboux theorem]] asserts that this is already a fully integrable structure. \hypertarget{ExamplesOrthogonalStructure}{}\subsubsection*{{Orthogonal structure}}\label{ExamplesOrthogonalStructure} An $O(n)\to GL(n)$-[[G-structure|structure]] is an [[orthogonal structure]], hence a [[vielbein]], hence a [[Riemannian metric]]. The [[fundamental theorem of Riemannian geometry]] says that in this case the [[torsion of a G-structure]] vanishes, exhibited by the existence of the [[Levi-Civita connection]]. The corresponding first-order integrability is the existence of [[Riemann normal coordinates]] (since these identify the given [[vielbein]] at any point to first order with the trivial (identity) vielbein). The higher order obstructions to integrability turn out to all be proportional to combinations of the [[Riemann curvature]]. Full integrability is equivalent to the vanishing of Riemann tensor, hence to the LC-connection being a [[flat connection]]. \hypertarget{UnitaryStructure}{}\subsubsection*{{Unitary structure}}\label{UnitaryStructure} The case of unitary structure is precisely the combination of the above three cases. By the fact (see at \emph{\href{unitary+group#RelationToOrthogonalSymplecticAndGeneralLinearGroup}{unitary group -- relation to orthogonal, symplectic and general linear group}}) that the [[unitary group]] is the intersection \begin{displaymath} U(n) \simeq O(2n) \underset{GL(2n,\mathbb{R})}{\times} Sp(2n,\mathbb{R}) \underset{GL(2n,\mathbb{R})}{\times} GL(n,\mathbb{C}) \end{displaymath} a $U(n) \hookrightarrow GL(2n,\mathbb{R})$-structure -- called an \emph{[[almost Hermitian structure]]} -- is precisely a joint [[orthogonal structure]], [[almost symplectic structure]] and [[almost complex structure]]. Hence if first order integrable -- called a [[Kähler manifold]] structure -- this is precisely a joint [[orthogonal structure]]/[[Riemannian manifold]] structure, [[symplectic manifold]] structure, [[complex manifold]] structure. \hypertarget{ExampleG2Structure}{}\subsubsection*{{$G_2$-Structure}}\label{ExampleG2Structure} A An $G_2 \to GL(7)$-[[G-structure|structure]] is a [[G2-structure]]. Its [[torsion of a G-structure]] vanishes if the corresponding definite 3-form $\omega$ is [[covariant derivative|covariantly constant]] with respect to the induced [[Riemannian metric]], in which case the structure is a [[G2-manifold]]. Beware that some authors refer to first-order integrable $G_2$-structure (or even weaker conditions) as ``integrable $G_2$-structure'' (see \hyperlink{G2+manifold#Bryant05}{Bryant 05, remark 2} for critical discussion of the terminology). The [[torsion of a G-structure|higher-order torsion invariants]] of $G_2$-structures do not in general vanish (e.g \hyperlink{Bryant05}{Bryant 05, (4.7)}) and so, contrary to the above cases of symplectic and complex structure, $G_2$-manifold structure does not imply integrable $G_2$-structure. \hypertarget{further_examples}{}\subsubsection*{{Further examples}}\label{further_examples} \begin{itemize}% \item [[CR-manifold]] \item [[torsion constraints of supergravity]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Shlomo Sternberg]], chapter VII of \emph{Lectures on differential geometry}, Prentice-Hall (1964) \item [[Victor Guillemin]], \emph{The integrability problem for $G$-structures}, Trans. Amer. Math. Soc. 116 (1965), 544--560. (\href{http://www.jstor.org/stable/1994134}{JSTOR}) \item D. V: Alekseevskii, \emph{$G$-structure on a manifold} in M. Hazewinkel (ed.) \emph{Encyclopedia of Mathematics, Volume 4} \end{itemize} Lecture notes include \begin{itemize}% \item Federica Pasquotto, \emph{Linear $G$-structures by example} (\href{http://www.few.vu.nl/~pasquott/course16.pdf}{pdf}) \end{itemize} Discussion with an eye towards [[torsion constraints in supergravity]] is in \begin{itemize}% \item [[John Lott]], \emph{The Geometry of Supergravity Torsion Constraints}, Comm. Math. Phys. 133 (1990), 563--615, (exposition in \href{http://arxiv.org/abs/math/0108125}{arXiv:0108125}) \end{itemize} Discussion with an eye towards [[special holonomy]] is in \begin{itemize}% \item [[Dominic Joyce]], \emph{Compact manifolds with special holonomy}, Oxford University Press 2000 \end{itemize} See also the references at \emph{[[torsion of a Cartan connection]]} and at \emph{[[torsion constraints in supergravity]]}. [[!redirects integrability of G-structure]] [[!redirects integrability of G-structures]] [[!redirects integrable G-structure]] [[!redirects integrable G-structures]] [[!redirects integrable G-stucture]] [[!redirects integrable G-stuctures]] [[!redirects first-order integrable G-structure]] [[!redirects first-order integrable G-structures]] \end{document}