\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{integral Steenrod square} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{IntegralSteenrodSquares}\hypertarget{IntegralSteenrodSquares}{} \textbf{([[integral Steenrod squares]])} For [[odd natural numbers|odd]] $2n + 1 \in \mathbb{N}$ the \emph{integral Steenrod square} $Sq^{2n + 1}_{\mathbb{Z}}$ is the [[composition]] of the mod-2 [[Steenrod square]] $Sq^{2n}$ with the [[Bockstein homomorphism]] $\beta$ associated with the sequence $\mathbb{Z} \overset{\cdot 2}{\to} \mathbb{Z} \overset{mod\, 2}{\longrightarrow} \mathbb{Z}/2\mathbb{Z}$: \begin{displaymath} Sq^{2n + 1}_{\mathbb{Z}} \;\coloneqq\; \beta \circ Sq^{2n} \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} The odd-degree integral Steenrod squares from def. \ref{IntegralSteenrodSquares} are indeed integral lifts of the mod-2 Steenrod squares in that \begin{displaymath} (mod\, 2) \circ Sq^{2n + 1}_{\mathbb{Z}} \;=\; Sq^{2n+1} \,, \end{displaymath} \end{prop} \begin{proof} This follows from the relation of the [[Bockstein homomorphism]] to the first [[Steenrod square]] \begin{displaymath} (mod, 2) \circ \beta = Sq^1 \end{displaymath} (\href{Bockstein+homomorphism#Mod2BocksteinIntoMod2Cohomology}{this example}) together with the first [[Adem relation]] \begin{displaymath} Sq^1 \circ Sq^{2n} = Sq^{2n+1} \end{displaymath} (\href{Steenrod+square#CompositionWithSq1}{this example}): \begin{displaymath} \itexarray{ Sq^{2n+1}_{\mathbb{Z}} &\colon& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\overset{Sk^{2n}}{\longrightarrow}& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\overset{ \beta }{\longrightarrow}& B^{\bullet + 2n + 1} \mathbb{Z} \\ && \downarrow^{ id } && \downarrow^{ id } && \downarrow^{\mathrlap{B^{k + 2 n + 1}(mod\, 2)}} \\ Sq^{2n+1} &\colon& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\underset{Sk^{2n}}{\longrightarrow}& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\underset{ Sq^1 }{\longrightarrow}& B^{\bullet + 2n + 1} (\mathbb{Z}/2\mathbb{Z}) } \end{displaymath} \end{proof} \begin{prop} \label{IntegralSteenrodSquareInTermsOfBocksteinForExponentialSequence}\hypertarget{IntegralSteenrodSquareInTermsOfBocksteinForExponentialSequence}{} \textbf{([[integral Steenrod square]] in terms of [[Bockstein homomorphism]] for [[exponential sequence]])} The integral Steenrod squares (def. \ref{IntegralSteenrodSquares}) may equivalently be written in terms of the [[Bockstein homomorphism]] $\delta$ of the [[exponential sequence]] $\mathbb{Z} \overset{\cdot 2\pi}{\longrightarrow} \mathbb{R} \overset{mod\, 2 \pi}{\longrightarrow} U(1)$ as \begin{equation} Sq^{2n+1}_{\mathbb{Z}} \;\colon\; B^{\bullet} (\mathbb{Z}/2\mathbb{Z}) \overset{ Sq^{2 n} }{\longrightarrow} B^{\bullet + 2n } (\mathbb{Z}/2\mathbb{Z}) \overset{ \iota }{\longrightarrow} B^{\bullet + 2n} U(1) \overset{\delta}{\longrightarrow} B^{\bullet + 2n + 1} \mathbb{Z} \,. \label{IntegralSteenrodSquareViaBocksteinOfExponentialSequence}\end{equation} \end{prop} \begin{proof} Since $\beta = \delta \circ \iota$, by \href{Bockstein+homomorphism#Mod2BocksteinAndExponentialExactSequence}{this example}. \end{proof} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{IntegralSteenrodSquareRefinedToOrdinaryDifferentialCohomology}\hypertarget{IntegralSteenrodSquareRefinedToOrdinaryDifferentialCohomology}{} \textbf{([[integral Steenrod square]] refined to [[ordinary differential cohomology]])} Let $\hat G_{2n+2} \colon X \to \mathbf{B}^{2n+1} U(1)_{conn}$ be a [[cocycle]] in [[ordinary differential cohomology]] of degree $2n + 2$. By inserting the bottom triangle of the ordinary [[differential cohomology hexagon]] (\href{differential+cohomology+diagram#eq:OrdinarCohomologyHexagon}{this diagram}) into the factorization in \eqref{IntegralSteenrodSquareViaBocksteinOfExponentialSequence} we obtain a canonical refinement of the [[integral Steenrod square]] $Sq^{2n+1}_{\mathbb{Z}} [G_{2n + 2}]$ to a cocycle $\widehat{Sq}^{2n+1}_{\mathbb{Z}} \hat G_{2n+2}$ in [[ordinary differential cohomology]], which happens to be [[flat infinity-bundle|flat]] \begin{displaymath} \itexarray{ && && \mathbf{B}^{4n+2} \flat U(1) &\longrightarrow& \mathbf{B}^{4n+2}U(1)_{conn} \\ && & {}^{\mathllap{ \iota \circ Sq^{2n} }}\nearrow & & {}_{\mathllap{\delta}}\searrow & \downarrow^{\chi} \\ X &\underset{G_{2n + 2}}{\longrightarrow}& B^{2n+2} \mathbb{Z} && \underset{ Sq^{2n+1}_{\mathbb{Z}} }{\longrightarrow} && B^{4n+3} \mathbb{Z} } \,. \end{displaymath} If one moreover asks that the integral Steenrod square vanishes \begin{displaymath} [ Sq^{2n+1}_{\mathbb{Z}} G_{2n+2}] \;=\; 0 \;\in\; H^{4n+3}(X,\mathbb{Z}) \end{displaymath} (as in \hyperlink{DiaconescuMooreWitten00}{Diaconescu-Moore-Witten 00, around (6.9)} for $n = 1$) then the curvature exact sequence and characteristic class exact sequence in [[ordinary differential cohomology]] (\href{ordinary+differential+cohomology#ExactSequencesForOrdDiffCohomology}{this prop.}) imply that the class of $\widehat{Sq}^{2n+1}_{\mathbb{Z}} \hat G_{2n + 2}$ is identified with a class in [[de Rham cohomology]] in degree $4n+3$: \begin{displaymath} H^{2n+2}_{diff}(X)|_{Sq^{2n+1}_{\mathbb{Z}} = 0} \overset{\widehat{Sq}_{\mathbb{Z}}^{2n+1}}{\longrightarrow} H^{4n+3}_{dR}(X) \,. \end{displaymath} \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[integral Stiefel-Whitney classes]] \item [[integral Wu structure]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The third integral Steenrod square $Sq^3_{\mathbb{Z}}$ plays a central role in the discussion of the [[supergravity C-field]] in \begin{itemize}% \item [[Gregory Moore]], [[Edward Witten]], \emph{$E_8$ Gauge Theory, and a Derivation of K-Theory from M-Theory}, Adv. Theor. Math. Phys. 6:1031-1134, 2003 (\href{https://arxiv.org/abs/hep-th/0005090}{arXiv:hep-th/0005090}) \end{itemize} [[!redirects integral Steenrod squares]] \end{document}