\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{integral transforms on sheaves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{linear_bases}{Linear bases}\dotfill \pageref*{linear_bases} \linebreak \noindent\hyperlink{homspaces}{Hom-spaces}\dotfill \pageref*{homspaces} \linebreak \noindent\hyperlink{tensor_products}{Tensor products}\dotfill \pageref*{tensor_products} \linebreak \noindent\hyperlink{FunctionSpaces}{Function spaces}\dotfill \pageref*{FunctionSpaces} \linebreak \noindent\hyperlink{products_of_function_objects}{Products of function objects}\dotfill \pageref*{products_of_function_objects} \linebreak \noindent\hyperlink{fiber_integration}{Fiber integration}\dotfill \pageref*{fiber_integration} \linebreak \noindent\hyperlink{integral_transforms}{Integral transforms}\dotfill \pageref*{integral_transforms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There is a sense in which a [[sheaf]] $F$ is like a [[categorification]] of a [[function]]: We may think of the [[stalk]]-map from [[point of a topos|topos point]]s to [[set]]s $(x^* \dashv x_*) \mapsto F(x) := x^* F \in Set$ under [[decategorification]] as a [[cardinality]]-valued [[function]]. Under this interpretation, many constructions in [[category theory]] have analogs in [[linear algebra]]: for instance products of numbers correspond to categorical [[product]]s (more generally to [[limit]]s) and addition of numbers to [[coproduct]]s (more generally to [[colimit]]s). Accordingly a [[colimit]]-preserving [[functor]] between [[sheaf topos]]es is analogous to a [[linear map]] or to a [[distribution]]: one also speaks of [[Lawvere distribution]]s. This [[categorification]] of [[linear algebra]] becomes even better behaved if we pass all the way to [[(∞,1)-sheaf (∞,1)-topos]]es. Under [[∞-groupoid cardinality]] their [[stalk]]s take values also in [[integer]]s, in [[rational number]]s, and in [[real number]]s. See also the discussion at [[Goodwillie calculus]]. A [[span]] of [[base change geometric morphism]]s between toposes behaves under this interpretation like the [[linear map]] given by a [[matrix]]. Such categorified [[integral transform]]s turn out to be of considerable interest in their own right: they include operations such as the [[Fourier-Mukai transform]] which categorifies the [[Fourier transform]]. These analogies have been noticed and exploited at various places in the literature. See for instance the entries [[groupoidification]] or [[geometric ∞-function theory]]. Here we try to give a general abstract [[(∞,1)-topos theory|(∞,1)-topos theoretic]] description with examples from ordinary [[topos theory]] to motivate the constructions. \hypertarget{linear_bases}{}\subsection*{{Linear bases}}\label{linear_bases} Every [[(∞,1)-topos]] is a [[locally presentable (∞,1)-category]]. More generally we may think of arbitrary locally presentable [[(∞,1)-categories]] as being analogous to [[vector space]]s of [[linear functional]]s. \begin{uprop} Every [[locally presentable (∞,1)-category]] is a [[reflective sub-(∞,1)-category]] of an [[(∞,1)-category of (∞,1)-presheaves]]. \end{uprop} See [[locally presentable (∞,1)-category]] for details. \begin{uremark} For $C$ a small [[(∞,1)-category]] the [[(∞,1)-category of (∞,1)-presheaves]] \begin{displaymath} \hat C := Func(C^{op}, \infty Grpd) \end{displaymath} is the [[free cocompletion|free (∞,1)-cocompletion]] of $C$, hence the free completion under [[(∞,1)-colimit]]s. Under the interpretation of colimits as sums, this means that it is analogous to the vector spaces \emph{spanned} by the [[basis]] $C$. Accordingly an arbitrary locally presentable $(\infty,1)$-category is analogous in this sense to a sub-space of a vector space spanned by a basis. \end{uremark} \begin{uprop} For $\hat C, \hat D$ two [[(∞,1)-categories of (∞,1)-presheaves]], a morphism $\hat C \to \hat D$ in [[Pr(∞,1)Cat]] is equivalently a [[(∞,1)-profunctor]] $C ⇸ D$. \end{uprop} See [[profunctor]] for details. \hypertarget{homspaces}{}\subsection*{{Hom-spaces}}\label{homspaces} \begin{uprop} For $C, D \in$ [[Pr(∞,1)Cat]] we have that $Func^L(C,D)$ is itself locally presentable. \end{uprop} See [[Pr(∞,1)Cat]] for details. \begin{uremark} This means that to the extent that we may think of $C, D$ as analogous to vector spaces, also the space of linear maps between them is analogous to a vector space. \end{uremark} \hypertarget{tensor_products}{}\subsection*{{Tensor products}}\label{tensor_products} \begin{uprop} For $C$ and $D$ two [[locally presentable (∞,1)-categories]] there is locally presentable $(\infty,1)$-category $C \otimes D$ and an [[(∞,1)-functor]] \begin{displaymath} C \times D \to C \otimes D \end{displaymath} which is [[universal property|universal]] with respect to the property that it preserves [[(∞,1)-colimit]]s in both arguments. \end{uprop} \begin{uremark} This means that in as far as $C, D \in$ [[Pr(∞,1)Cat]] are analogous to vector spaces, $C \otimes D$ is analogous to their [[tensor product]]. \end{uremark} \hypertarget{FunctionSpaces}{}\subsection*{{Function spaces}}\label{FunctionSpaces} We consider from now on some fixed ambient [[(∞,1)-topos]] $\mathbf{H}$. Notice that for each [[object]] $X \in \mathbf{H}$ the [[over-(∞,1)-topos]] $\mathbf{H}/X$ is the [[little topos]] of $(\infty,1)$-sheaves on $X$. So to the extent that we think of these as \textbf{function objects}, and of locally presentable $(\infty,1)$-categories as linear spaces, we may think of $\mathbf{H}/X$ as the $\infty$-vector space of $\infty$-functions on $X$ \begin{uremark} The [[over-(∞,1)-topos]]es $\mathbf{H}/X$ sit by an [[etale geometric morphism]] over $\mathbf{H}$ and are characterized up to equivalence by this property. Moreover, we have an equivalence of the ambient $(\infty,1)$-topos $\mathbf{H}$ with the $(\infty,1)$-category of [[etale geometric morphism]]s into it. \begin{displaymath} ((\infty,1)Topos/\mathbf{H})_{et} \simeq \mathbf{H} \,. \end{displaymath} \end{uremark} \begin{uexample} Let $\mathbf{H} =$ [[FinSet]] be the ordinary [[topos]] of [[finite set]]s. Then for $X \in FinSet$ a finite set, a \emph{function object} on $X$ is a morphism $\psi : \Psi \to X$ of sets. Under the [[cardinality]] [[decategorification]] \begin{displaymath} |-| : FinSet \to \mathbb{N} \end{displaymath} we think of this as the [[function]] \begin{displaymath} |\psi| : X \to \mathbb{N} \end{displaymath} given by \begin{displaymath} x \mapsto |\Psi_x| \,, \end{displaymath} where $\Psi_x \in FinSet$ is the [[fiber]] of $\psi$ over $X$. \end{uexample} \begin{uexample} Let $\mathbf{H} =$ [[∞Grpd]]. By the [[(∞,1)-Grothendieck construction]] we have for $X \in \infty Grpd$ an [[∞-groupoid]] an [[equivalence of (∞,1)-categories]] \begin{displaymath} \infty Grpd/X \simeq PSh_{(\infty,1)}(X) \simeq Func_{(\infty,1)}(X,\infty Grpd) \end{displaymath} of the [[over-(∞,1)-category]] of all $\infty$-groupoids over $X$ with the [[(∞,1)-category of (∞,1)-presheaves]] on $X$. And since the $\infty$-groupoid $C$ is equivalent to its [[opposite (∞,1)-category]] this is also equivalent to the [[(∞,1)-category of (∞,1)-functors]] from $C$ to [[∞Grpd]]. \end{uexample} \hypertarget{products_of_function_objects}{}\subsection*{{Products of function objects}}\label{products_of_function_objects} For $\psi : \Psi \to X$ and $\phi : \Phi \to X$ in $\mathbf{H}/X$ two function objects on $X$, their [[product]] $\psi \times \phi$ in $\mathbf{H}/X$ we call the \textbf{product of function objects}. This is computed in $\mathbf{H}$ as the [[fiber product]] \begin{displaymath} \psi \times^{\mathbf{H}/X} \phi = \Psi \times^{\mathbf{H}}_X \Phi \end{displaymath} and the morphism down to $X$ is the evident projection \begin{displaymath} \itexarray{ && \Psi \times_{X}^{\mathbf{H}} \Phi \\ & \swarrow && \searrow \\ \Psi &&\downarrow^{\psi \times^{\mathbf{H}/X} \phi}&& \Phi \\ & {}_{\mathllap{\psi}}\searrow && \swarrow_{\mathrlap{\phi}} \\ && X } \,. \end{displaymath} \begin{uexample} In $\mathbf{H} =$ [[FinSet]] we have that the $\mathbb{N}$-valued function underlying the product function object is the usual pointwise product of functions \begin{displaymath} |\psi \cdot \phi| : x \mapsto |\psi|(x) \cdot |\phi|(x) \,. \end{displaymath} \end{uexample} \hypertarget{fiber_integration}{}\subsection*{{Fiber integration}}\label{fiber_integration} For every [[morphism]] $v : X \to Y$ in the ambient [[(∞,1)-topos]] $\mathbf{H}$ there is the corresponding [[base change geometric morphism]] \begin{displaymath} (v_! \dashv v^* \dashv v_*) : \mathbf{H}/X \stackrel{\overset{v_!}{\to}}{\stackrel{\overset{v^*}{\leftarrow}}{\underset{v_*}{\to}}} \mathbf{H}/Y \end{displaymath} between the corresponding [[over-(∞,1)-topos]]es. Here $v_!$ acts simply by postcomposition with $v$: \begin{displaymath} v_! : (\Psi \stackrel{\psi}{\to} X) \mapsto (\Psi \stackrel{\psi}{\to} X \stackrel{v}{\to} Y) \end{displaymath} while $v^*$ acts by [[(∞,1)-pullback]] along $v$: \begin{displaymath} v^* : (\Phi \stackrel{\phi}{\to} Y) \mapsto (X \times_Y \Phi) \,. \end{displaymath} There is a further [[right adjoint]] $v_*$. For the present purpose the relevance of its existence is that it implies that both $v_!$ as well as $v^*$ are [[left adjoint]]s and hence both preserve [[(∞,1)-colimit]]s. Therefore these are morphism in [[Pr(∞,1)Cat]] and hence behave like linear maps on our function spaces $\mathbf{H}/X$ and $\mathbf{H}/Y$. When we think of [[base change]] in the context of linear algebra on sheaves, we shall write $\int_{X/Y} := v_!$ \begin{displaymath} (\int_{X/Y} \dashv v^*) : \mathbf{H}/X \stackrel{\overset{\int_{X/Y}}{\to}}{\underset{v^*}{\leftarrow}} \mathbf{H}/Y \end{displaymath} and call $\int_{X/Y} \psi$ the \textbf{[[fiber integration]]} of $F$ over the fibers of $v$. In particular when $Y = *$ is the [[terminal object]] we write simply \begin{displaymath} \int_X \psi \in \mathbf{H} \end{displaymath} for the \textbf{integral} of $\psi$ with values in the ambient $(\infty,1)$-topos. (See also the notation for [[Lawvere distribution]]s). \begin{uexample} Consider the ordinary [[topos]] $\mathbf{H} =$ [[FinSet]] and for $X \in \mathbf{H}$ any set the unique [[morphism]] $v : X \to *$ to the [[terminal object]]. For $\psi : \Psi \to X$ a function object with underlying function $\psi : x \mapsto |\Psi_x|$ we have that the integral \begin{displaymath} \int_X \psi : \Psi \to * \end{displaymath} has as underlying function the constant \begin{displaymath} |\int_X \psi| = \sum_{x \in X} |\psi|(x) \,. \end{displaymath} \end{uexample} \hypertarget{integral_transforms}{}\subsection*{{Integral transforms}}\label{integral_transforms} If we are given an oriented [[span]] or [[correspondence]] \begin{displaymath} \left( \itexarray{ && A \\ & {}^{\mathllap{i}}\swarrow && \searrow^{\mathrlap{o}} \\ X &&&& Y } \right) \end{displaymath} in $\mathbf{H}$ it induces by composition of pullback and fiber integration operations a colimit-preserving $(\infty,1)$-functor \begin{displaymath} \underline{A} : \mathbf{H}/X \stackrel{i^*}{\to} \mathbf{H}/A \stackrel{\int_{A/Y}}{\to} \mathbf{H}/Y \,. \end{displaymath} We may always factor $(i,o)$ through the [[(∞,1)-limit|(∞,1)-product]] \begin{displaymath} \left( \itexarray{ && A \\ && \downarrow^{\mathrlap{(i,o)}} \\ && X \times Y \\ & {}^{\mathllap{p_1}}\swarrow && \searrow^{\mathrlap{p_2}} \\ X &&&& Y } \right) \,. \end{displaymath} We call the function object \begin{displaymath} ((i,o) : A \to X \times Y) \in \mathbf{H}/(X\times Y) \end{displaymath} on $X \times Y$ the \textbf{integral kernel} of $\underline{A}$. \begin{ulemma} We have the \textbf{pull-tensor-push formula} for $\underline{A}$: \begin{displaymath} \underline{A} F = \int_{A/Y} i^* F = (p_2)_!(A \times (p_1^* F) ) \,. \end{displaymath} \end{ulemma} \begin{proof} This follows from the for pullbacks in $\mathbf{H}$: \begin{displaymath} \itexarray{ i^* \Psi &\to& p_1^* \Psi &\to& \Psi \\ \downarrow && \downarrow && \downarrow^{\mathrlap{\psi}} \\ A &\stackrel{(i,o)}{\to}& X \times Y &\stackrel{p_1}{\to}& X } \,. \end{displaymath} \end{proof} \begin{uremark} By the \hyperlink{EtaleIdentificationRemark}{above remark} on [[etale geometric morphism]]s we have that we can recover the span $X \stackrel{i}{\leftarrow} A \stackrel{o}{\to} Y$ in $\mathbf{H}$ from the span \begin{displaymath} \itexarray{ \mathbf{H}/X &\stackrel{\overset{i^*}{\to}}{\underset{i_*}{\leftarrow}}& \mathbf{H}/A &\stackrel{\overset{o^*}{\leftarrow}}{\underset{o_*}{\to}}& \mathbf{H}/Y \\ & \searrow\nwarrow & \downarrow\uparrow & \swarrow\nearrow \\ && \mathbf{H} } \end{displaymath} in $((\infty,1)Topos/\mathbf{H})_{et}$. \end{uremark} \begin{uexample} In $\mathbf{H} =$ [[FinSet]] we have that $(|A_{x,y}|)$ is a $|X|$-by-$|Y|$-[[matrix]] with entries in [[natural number]]s and the function \begin{displaymath} |A \psi | : y \mapsto | (i^* \Psi)_y | = \sum_{x \in X} |A_{x,y}| \cdot |\psi|(x) \end{displaymath} is the result of applying the familiar [[linear map]] given by usual [[matrix calculus]] on $|\psi|$. \end{uexample} \begin{uexample} In the case $\mathbf{H} =$ [[∞Grpd]] we have -- as in the \hyperlink{PresheavesOnGroupoids}{above example} -- by the [[(∞,1)-Grothendieck construction]] an equivalence \begin{displaymath} \infty Grpd / (X \times Y) \simeq PSh_{(\infty,1)}(X \times Y) \,. \end{displaymath} Since the $\infty$-groupoid $Y$ is equivalent to its [[opposite (∞,1)-category]] this may also be written as \begin{displaymath} \infty Grpd / (X \times Y) \simeq Func_{(\infty,1)}(X \times Y^{op}, \infty Grpd) \,. \end{displaymath} The objects on the right we may again think of as $(\infty,1)$-[[profunctor]]s $X ⇸ Y$. So in particular the kernel $(A \to X \times Y) \in \infty Grpd/(X \times Y)$ is under this equivalence on the right hand identified with an $(\infty,1)$-profunctor \begin{displaymath} \tilde A : X ⇸ Y \,. \end{displaymath} \end{uexample} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[integral transform]] \begin{itemize}% \item [[Fourier-Mukai transform]], [[Hecke transform]] \end{itemize} \item [[polynomial functor]] \item [[pure motives]], [[motives in physics]], [[motivic quantization]] \item [[path integral as a pull-push transform]] \end{itemize} \end{document}