\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{internal (co-)limit} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ExamplesInfinityGroupoidal}{$\infty$-Groupoidal homotopy limits and colimits of $\infty$-groupoids}\dotfill \pageref*{ExamplesInfinityGroupoidal} \linebreak \noindent\hyperlink{BorelConstructionHomotopyQuotients}{Borel construction and homotopy-quotients, -invariants, -coinvariants}\dotfill \pageref*{BorelConstructionHomotopyQuotients} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Speaking in the [[internal language]] of a given [[category]] $\mathbf{H}$, one may try to formulate [[universal constructions]] such as of [[limits]]/[[colimits]] internally. Given the system of [[slice categories]] $\mathbf{H}_{/X}$ of $\mathbf{H}$ (or more generally any [[indexed category]] $X \mapsto \mathbf{H}_X$), then one may regard $X$ as the shape of a discrete [[internal diagram]] in $\mathbf{H}$, and regard the objects in the slice $\mathbf{H}_{/X}$ as discrete actual [[internal diagrams]] of this shape. If $\mathbf{H}$ happens to have a (small) [[object classifier]] $\mathbf{h}$, then this is particularly evocative, as then (small) such slice objects $\hat F$ over $X$ [[equivalence|equivalent]] to morphisms $F \colon X \to \mathbf{h}$, hence are directly analogous to external diagrams in the form of [[functors]] $\mathcal{X}\to \mathbf{H}$. Now if $\mathbf{H}$ has good enough properties as a (self-)[[indexed category]] in that it is a [[hyperdoctrine]] with [[dependent sum]] $\underset{X \stackrel{f}{\to} Y}{\sum} \colon \mathbf{H}_{/X} \to \mathbf{H}_{/Y}$ and [[dependent product]] $\underset{X \stackrel{f}{\to} Y}{\prod} \colon \mathbf{H}_{/X} \to \mathbf{H}_{/Y}$ operations, then it makes sense to define the \emph{internal colimit} of a discrete diagram as above as \begin{displaymath} \underset{\longrightarrow}{\lim} F \coloneqq \underset{X}{\sum} \hat F \end{displaymath} and the \emph{internal limit} as \begin{displaymath} \underset{\longleftarrow}{\lim} F \coloneqq \underset{X}{\prod} \hat F \,. \end{displaymath} Of course with $X$ being, internally, a discrete diagram shape these are, so far, just internal [[coproducts]] and internal [[products]], respectively (which is of course the source of the terminology ``dependent sum'' and ``dependent product''). It is more or less straightforward to extend the above from $\mathbf{H}$ to $Cat(\mathbf{H})$, the collection of [[internal categories]] in $\mathbf{H}$, then consider for a given internal category (hence [[internal diagram]] shape) $C \in Cat(\mathbf{H})$ the objects in $Cat(\mathbf{H})_{/C}$ as not-necessarily discrete diagrams, and proceed as before. For various specific choices of context $\mathbf{H}$, this is considered in (\hyperlink{Johnstone}{Johnstone, below prop. B2.3.20}, \hyperlink{Pisani09}{Pisani 09, p.18, p. 23}, \hyperlink{HoTTBook}{HoTTBook, section 6.12}). To see internally the expected [[universal property]] of the above definition, consider the [[internal diagram|internal]] $X$-diagram constant on any $A \in \mathbf{H}$, namely $X^\ast A \in \mathbf{H}_{/X}$. If there is an [[object classifier]] $\mathbf{h}$ then this corresponds indeed to the [[constant map]] $X \to \ast \stackrel{\vdash A}{\to} \mathbf{h}$. Accordingly an internal [[cone]] with tip $A$ over the diagram $F$ as above is a morphism of $X$-diagrams (hence in $\mathbf{H}_{/X}$) of the fomr \begin{displaymath} X^\ast A \longrightarrow \hat F \,. \end{displaymath} Now by the defining [[adjunction]] $(X^\ast \dashv \underset{X}{\prod})$ of the [[dependent product]], such morphisms are equivalent to morphisms \begin{displaymath} A \longrightarrow \underset{X}{\prod} \hat F \end{displaymath} in $\mathbf{H}$, hence by the above definition to morphisms \begin{displaymath} A \longrightarrow \underset{\longleftarrow}{\lim} F \end{displaymath} from $A$ into the internal colimit. This is clearly the internal version of the statement that is extrernally true [[Set]], that the [[limit]] of sets over a diagram is the set of all its [[cones]]. Dually, an internal [[cocone]] is a morphism \begin{displaymath} \hat F \longrightarrow X^\ast A \end{displaymath} in $\mathbf{H}_{/X}$, and by the defining [[adjunction]] $(\underset{X}{\sum} \dashv X^\ast)$ of the [[dependent sum]] this is equivalently a morphism \begin{displaymath} \underset{\longrightarrow}{\lim} F \longrightarrow A \end{displaymath} exhibiting internally the statement familiar externally from [[Set]] that maps out of colimits of a diagram are equivalently cocones under that diagram. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ExamplesInfinityGroupoidal}{}\subsubsection*{{$\infty$-Groupoidal homotopy limits and colimits of $\infty$-groupoids}}\label{ExamplesInfinityGroupoidal} The small [[object classifier]] of the [[(∞,1)-topos]] [[∞Grpd]] is $Core(\infty Grpd_{small})$ itself. Hence an $\infty$-groupoidal-shaped diagram of [[∞-groupoids]] is \emph{internally} in [[∞Grpd]] a discrete diagram $F \colon X\to Core(\infty Grpd_{small})$. The slice object classified by this is the pullback of the [[universal right fibration]], which is equivalently its [[(∞,1)-Grothendieck construction]] $\hat F = \int_X F$. Accordingly the above gives the internal limits and colimits \begin{displaymath} \underset{\longleftarrow}{\lim} F = \underset{X}{\sum} \hat F \end{displaymath} and \begin{displaymath} \underset{\longrightarrow}{\lim} F = \underset{X}{\prod} \hat F \,. \end{displaymath} There are indeed also the correct external [[(∞,1)-colimits]] and [[(∞,1)-limits]], by the discussion \href{limit+in+a+quasi-category#WithValInooGrpd}{here}. \hypertarget{BorelConstructionHomotopyQuotients}{}\subsubsection*{{Borel construction and homotopy-quotients, -invariants, -coinvariants}}\label{BorelConstructionHomotopyQuotients} For $\mathbf{H}$ an [[(∞,1)-topos]] and $G$ an [[∞-group]] object, consider $X = \mathbf{B}G$ its [[delooping]]. Externally this is in general highly non-discrete, but internally this, being $\infty$-groupoidal, is a disrete diagram shape. An [[internal diagram]] of this shape \begin{displaymath} \rho \;\colon\; \mathbf{B}G \longrightarrow \mathbf{h} \end{displaymath} is equivalently an [[∞-action]] of $G$ on the object $V$ named by \begin{displaymath} \ast \to\mathbf{B}G \longrightarrow \mathbf{h} \,. \end{displaymath} Now the internal colimit \begin{displaymath} \underset{\longrightarrow}{\lim} \rho = \underset{\mathbf{B}G}{\sum} \hat \rho \simeq V/\!/G \end{displaymath} is the [[homotopy quotient]] of $V$ by $G$, equivalently the object of [[homotopy coinvariants]]. In $\mathbf{H} =$ [[∞Grpd]] this is given by the [[Borel construction]]. Similarly, the internal limit \begin{displaymath} \underset{\longleftarrow}{\lim} \rho = \underset{\mathbf{B}G}{\prod} \hat\rho \simeq Ext_G(\ast, V) \end{displaymath} is the [[homotopy invariants]] of the action. More generally, the internal left and right [[Kan extension]] give the [[induced representation]] and [[coinduced representation]] constructions. See at \emph{[[∞-action]]} for more on this. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter Johnstone]], section B2 in \emph{[[Sketches of an Elephant]]} \item [[Claudio Pisani]], \emph{Balanced Category Theory II} (\href{http://arxiv.org/abs/0904.1790}{arXiv:0904.1790}) \item [[Univalent Foundations Project]], section 6.12 of \emph{[[Homotopy Type Theory -- Univalent Foundations of Mathematics]]} \end{itemize} [[!redirects internal (co-)limits]] [[!redirects internal limit]] [[!redirects internal limits]] [[!redirects internal colimit]] [[!redirects internal colimits]] \end{document}