\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{internal diagram} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{internal_category_theory}{}\paragraph*{{Internal category theory}}\label{internal_category_theory} [[!include internal infinity-categories contents]] \hypertarget{internal_diagrams}{}\section*{{Internal diagrams}}\label{internal_diagrams} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_category_theory}{In category theory}\dotfill \pageref*{in_category_theory} \linebreak \noindent\hyperlink{in_dependent_type_theory}{In dependent type theory}\dotfill \pageref*{in_dependent_type_theory} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{diagrams_in_an_indexed_category}{Diagrams in an indexed category}\dotfill \pageref*{diagrams_in_an_indexed_category} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[finitely complete category]] $E$, one can consider the [[bicategory]] $Cat(E)$ of [[internal categories]] in $E$, and thus [[internal functors]], which are the morphisms in $Cat(E)$. If $E = Set$ then one can consider not only functors among small categories but also functors of the type $F: C\to Set$ from a small category $C$ to a large category of sets. In that case one can describe $F$ as consisting of a $C_0$-indexed family of objects and an action of $C_1$ on the diagram. Compare the ideas discussed on this page with those at [[internal profunctor]] and [[discrete fibration]]. All three notions intersect --- an internal diagram on $C$ is the same thing as an internal profunctor $C ⇸ 1$, which is the same thing as a discrete opfibration in $Cat(E)$. The three generalize the basic idea in different ways. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_category_theory}{}\subsubsection*{{In category theory}}\label{in_category_theory} Given an [[internal category]] $C\in Cat(E)$, with the usual structure maps $s,t,i,c$, an \textbf{internal [[diagram]]} $F$ on $C$ (or, of type $C$) is given by \begin{itemize}% \item a [[morphism]] $d : F_0\to C_0$ in $E$ together with \item a morphism $e : F_1= F_0\times_{C_0} C_1 \to F_0$ \end{itemize} where $F_1$ is the [[pullback]] \begin{displaymath} \itexarray{ F_0 \times_{C_0} C_1 & \to & F_0 \\ \mathllap{s^* d} \downarrow & & \downarrow \mathrlap{d} \\ C_1 & \underset{s}{\to} & C_0 } \end{displaymath} These data must satisfy the following conditions: \begin{itemize}% \item $e$ respects the source and target maps of $C$, in that $d \circ e = t \circ s^* d$. Equivalently, $e$ is a morphism from $s^* d$ to $t^* d$ in $E/C_1$. \item $e$ is an \emph{action} in the sense that $e \circ (1 \times i) = 1$ and $e(e \times 1) = e(1 \times c)$. \end{itemize} It is clear how to define [[homomorphisms]] of internal diagrams: a morphism $F \to G$ is given by an $E/C_0$-morphism $F_0 \to G_0$ that commutes with the actions $e$. Internal diagrams on $C$ in $E$ form a category denoted by $E^C$. An internal diagram on $C^{op}$ is sometimes called an \textbf{[[internal presheaf]]} on $C$. \hypertarget{in_dependent_type_theory}{}\subsubsection*{{In dependent type theory}}\label{in_dependent_type_theory} Using the [[dependent type theory|language of]] [[dependent type|dependent types]], the map $d: F_0 \to C_0$ can be seen as the [[categorical semantics|interpretation]] of a dependent type $(X:C_0) \,\vdash\, (F(X):Type)$. The action of $C_1$ on $F_0$ can equivalently be given by the interpretation of a term in [[context]]: \begin{displaymath} (X:C_0), (Y:C_0), (f:C_1(X,Y)), (a:F(X)) \;\vdash\; (p(X,Y,f,a) : F(Y)). \end{displaymath} Here we consider $C_1$ to depend on $C_0 \times C_0$ by the canonical morphism $C_1 \to C_0 \times C_0$ induced by $s$ and $t$, as in the [[type-theoretic definition of category]]. If the ambient category $E$ is a [[locally cartesian closed category]], so that its internal type theory has [[dependent product types]], then this can be interpreted instead as a closed term \begin{displaymath} p : \Pi_{X,Y:C_0} \Pi_{f:C_1(X,Y)} (F(X) \to F(Y)). \end{displaymath} The axioms then take a particularly familiar form, also to be interpreted in the [[internal language]] of $E$: \begin{itemize}% \item $(X:C_0), (a:F(X)) \;\vdash\; p(X,X,id_X,a) = a$ \item $(X,Y,Z:C_0), (f:C_1(X,Y)), (g:C_1(Y,Z)), (a:F(X)) \;\vdash\; p(X,Z,g \circ f,a) = p(Y,Z,g,p(X,Y,f,a))$ \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} From an internal diagram $(F,C,\lambda,e)$ one can equip $F =(F_0,F_1)$ with a structure of an internal category over $C$. In other words, there is a forgetful functor $E^C\to Cat(E)/C$ (where $Cat(E)/C$ is the corresponding [[slice category]]). This functor is fully faithful and its essential image consists precisely of all objects in $Cat(E)/C$ which are [[discrete opfibrations]]. Similarly, the objects of $E^{C^{op}}$ are the [[discrete fibrations]] in $Cat(E)/C$. There is a composite forgetful functor $U \colon E^C \to Cat(E)/C \to E/C_0$. This functor $U$ is monadic --- its left adjoint takes $p \colon X \to C_0$ to $t \circ s^* p \colon X \times_{C_0} C_1 \to C_1 \to C_0$. \hypertarget{diagrams_in_an_indexed_category}{}\subsection*{{Diagrams in an indexed category}}\label{diagrams_in_an_indexed_category} An internal diagram as above may take values in any [[Grothendieck fibration]] over $E$. Given a fibration in the guise of an [[indexed category]] $F : E^{op} \to Cat$, a \textbf{$C$-diagram in $F$} is given by \begin{itemize}% \item an object $P \in F(C_0)$, together with \item a morphism $\phi : s^* P \to t^* P$ in $F(C_1)$ \end{itemize} satisfying `cocycle equations' \begin{itemize}% \item $i^*\phi = 1_P$ \item $c^*\phi = p_1^* \phi \circ p_2^* \phi$ \end{itemize} modulo coherent isos, where the $p_i$ are the projections out of $C_2$. By the [[Yoneda lemma for bicategories]], the object $P$ determines (up to canonical isomorphism) a pseudonatural $\alpha^0 : E(-,C_0) \to F_0$ in $[E^{op},Cat]$, where $E$ is considered as a locally discrete bicategory, and $F_0(X) = ob F X$ considered as a discrete category, such that $\alpha^0(f) \cong f^* P$. Similarly, $\phi$ determines $\alpha^1 : E(-,C_1) \to F_1 = arr \circ F$, and $\alpha^1(g) \cong g^* \phi$. It is not hard to check that the conditions above correspond to requiring that the $\alpha^i_X$ form a functor $E(X,C) \to F X$ for each $X$, and pseudonaturality then makes the $C$-diagram $(P,\phi)$ equivalent to an [[indexed functor]] $E(-,C) \to F$. The category of $C$-diagrams in $F$ is then simply the hom-category $[E^{op},Cat](E(-,C),F)$. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \begin{itemize}% \item An internal diagram on $C$ in the sense above is a $C$-diagram in the [[codomain fibration]] of $E$, that is the pseudofunctor $X \mapsto E/X$. \item If $E$ is equipped with a [[coverage]] and $C$ is the [[Cech nerve]] associated to a cover $p : U \to X$ in $E$, then the category of $C$-diagrams in $F$ is the [[descent]] category $Des_p(F)$. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[diagram]], [[commuting diagram]], [[free diagram]] \item [[internal presheaf]], [[internal sheaf]] \item [[internal (co-)limit]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[P. T. Johnstone]], \emph{Topos theory}, 1977, chapter 2 \item [[Elephant]], B2.3 \end{itemize} [[!redirects internal diagrams]] \end{document}