\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{internal hom} \begin{quote}% This page discusses the general concept of mapping spaces and internal homs. For mapping spaces in topology, see at \emph{[[compact-open topology]]}. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{mapping_space}{}\paragraph*{{Mapping space}}\label{mapping_space} [[!include mapping space - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{EvaluationMap}{Evaluation map}\dotfill \pageref*{EvaluationMap} \linebreak \noindent\hyperlink{CompositionMap}{Composition map}\dotfill \pageref*{CompositionMap} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{BasicProperties}{Basic properties}\dotfill \pageref*{BasicProperties} \linebreak \noindent\hyperlink{relation_to_function_types}{Relation to function types}\dotfill \pageref*{relation_to_function_types} \linebreak \noindent\hyperlink{induced_monad_state_monad}{Induced monad (state monad)}\dotfill \pageref*{induced_monad_state_monad} \linebreak \noindent\hyperlink{StableSplitting}{Stable splitting}\dotfill \pageref*{StableSplitting} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{in_sets}{In sets}\dotfill \pageref*{in_sets} \linebreak \noindent\hyperlink{in_simplicial_sets}{In simplicial sets}\dotfill \pageref*{in_simplicial_sets} \linebreak \noindent\hyperlink{InASheafTopos}{In a sheaf topos or $(\infty,1)$-sheaf $(\infty,1)$-topos}\dotfill \pageref*{InASheafTopos} \linebreak \noindent\hyperlink{ExampleInSliceCategories}{In slice categories}\dotfill \pageref*{ExampleInSliceCategories} \linebreak \noindent\hyperlink{for_smooth_spaces_and_smooth_groupoids}{For smooth spaces and smooth $\infty$-groupoids}\dotfill \pageref*{for_smooth_spaces_and_smooth_groupoids} \linebreak \noindent\hyperlink{for_chain_complexes}{For chain complexes}\dotfill \pageref*{for_chain_complexes} \linebreak \noindent\hyperlink{for_super_vector_spaces}{For super vector spaces}\dotfill \pageref*{for_super_vector_spaces} \linebreak \noindent\hyperlink{for_banach_spaces}{For Banach spaces}\dotfill \pageref*{for_banach_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $\mathcal{C}$ a [[category]] and $X, Y \in \mathcal{C}$ two [[objects]], the \emph{internal hom} $[X,Y] \in \mathcal{C}$ from $X$ to $Y$ is, if it exists, another [[object]] of $\mathcal{C}$ which behaves like the ``object of [[morphisms]]'' from $X$ to $Y$. In other words it is, if it exists, an [[internalization|internal version]] of the ordinary [[hom set]] $\mathcal{C} \in Set$ or more generally [[hom object]] $\mathcal{C}(X, Y) \in \mathcal{V}$ of a [[locally small category]] or $\mathcal{V}$-[[enriched category]]. One way to make this precise starts by mimicking a property of the [[function set]] $[X,Y] = \{f : X \to Y\}$ of [[functions]] between two [[sets]] $X$ and $Y$: this set is characterized by the fact that for any other set $S$, the functions $S \to [X,Y]$ are in [[natural bijection]] with the functions $S \times X \to Y$ out of the [[cartesian product]] of $S$ with $X$. That is: for each set $X$, the [[functor]] $(-) \times X$ has a [[right adjoint]], given by the construction $[X,-]$. One can verbalize this thus: \emph{taking the cartesian product with the set $X$} is left-adjoint to \emph{taking the set of all functions out of $X$}. This, then, is, generally, the definition of \emph{internal hom} in any [[cartesian monoidal category]] or in fact in any [[monoidal category]] $(\mathcal{C}, \otimes)$: the [[right adjoint]] $[X,-]$ to the given [[tensor product]] functor $(-)\otimes X$ for all objects $X$. It may or may not exist. If it exists, one says that $(\mathcal{C}, \otimes)$ is a \emph{[[closed monoidal category|closed]]} [[monoidal category]]. Explicity, the condition is that there is an [[isomorphism]]([[bijection]]) \begin{displaymath} \mathcal{C}(A, [X,Z]) \stackrel{\simeq}{\to} \mathcal{C}(A \otimes X, Z) \end{displaymath} which is [[natural isomorphism|natural]] in all three [[variables]]. (The rightward map here is often called \textbf{[[currying]]}, especially in a [[closed monoidal category]] (and more especially for the $\lambda$-[[lambda-calculus|calculus]]).) In particular this implies that in a closed monoidal category the external hom is re-obtained from the internal hom as its set of [[generalized elements]] out of the [[unit object|tensor unit]] $I \in \mathcal{C}$ in that \begin{displaymath} \frac{I \to [X,Y]}{X \to Y} \end{displaymath} using that $I \otimes X \simeq X$ by definition of the tensor unit. Here ``closed'' in ``[[closed monoidal category]]'' is in the sense that forming ``hom-sets'' does not lead ``out of the category''. In fact the internal hom of a [[cartesian monoidal category]] is indeed the hom as seen in the \emph{[[internal logic]]} of that category (the \emph{[[function type]]}). More generally, one can consider objects that satisfy some basic [[universal properties]] that an internal hom should satisfy even in the absence of a [[monoidal category|monoidal structure]]. If such objects exist one speaks therefore just of a \emph{[[closed category]]}. Every [[closed category]] may be seen as a category [[enriched category|enriched]] over itself. Accordingly, an internal hom is after all a special case of a [[hom-object]], for the special case of this enrichment over itself. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{ClosedMonoidalCategory}\hypertarget{ClosedMonoidalCategory}{} \textbf{(internal hom)} Let $(\mathcal{C}, \otimes)$ be a [[symmetric monoidal category|symmetric]] [[monoidal category]]. An \textbf{internal hom} in $\mathcal{C}$ is a [[functor]] \begin{displaymath} [-,-] : \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C} \end{displaymath} such that for every [[object]] $X \in \mathcal{C}$ we have a pair of [[adjoint functors]] \begin{displaymath} ((-) \otimes X \dashv [X, -]) : \mathcal{C} \to \mathcal{C} \,. \end{displaymath} If this exists, $(\mathcal{C}, \otimes)$ is called a \emph{[[closed monoidal category]]}. \end{defn} \begin{remark} \label{}\hypertarget{}{} If the monoidal category $\mathcal{C}$ in Def. \ref{ClosedMonoidalCategory} is not [[symmetric monoidal category|symmetric]], there is instead a concept of left- and right-internal hom. \end{remark} \hypertarget{EvaluationMap}{}\subsubsection*{{Evaluation map}}\label{EvaluationMap} Let $(\mathcal{C}, \otimes)$ be a [[symmetric monoidal category|symmetric]] [[closed monoidal category]] (Def. \ref{ClosedMonoidalCategory}). \begin{defn} \label{EvalMap}\hypertarget{EvalMap}{} For $X,Y \in \mathcal{C}$ two [[objects]], the \textbf{[[evaluation map]]} \begin{displaymath} eval_{X,Y} : [X,Y] \otimes X \to Y \end{displaymath} is the $((-)\otimes X \dashv [X,-])$-[[adjunct]] of the [[identity]] $id_{[X,Y]} : [X,Y] \to [X,Y]$. \end{defn} \begin{remark} \label{}\hypertarget{}{} If $\mathcal{C}$ is specifically a [[locally cartesian closed category]], then in terms of the [[type theory]] [[internal language]] of $\mathcal{C}$ the [[evaluation map]] is the [[categorical semantics]] of the [[dependent type]] which in [[type theory]] [[syntax]] is \begin{displaymath} f \colon X \to Y,\; x \colon X \;\vdash\; f(x) \colon Y \,, \end{displaymath} with \emph{[[function application]]} on the right. \end{remark} \hypertarget{CompositionMap}{}\subsubsection*{{Composition map}}\label{CompositionMap} Let $(\mathcal{C}, \times)$ be a [[symmetric monoidal category|symmetric]] [[closed monoidal category]] (Def. \ref{ClosedMonoidalCategory}) \begin{defn} \label{CompositionMorphism}\hypertarget{CompositionMorphism}{} For $X, Y, Z \in \mathcal{C}$ three [[objects]], the \textbf{[[composition]] morphism} \begin{displaymath} \circ_{X,Y,Z} : [Y, Z] \times [X, Y] \to [X, Z] \end{displaymath} is the $((-)\times X \dashv [X,-])$-[[adjunct]] of the following composite of two [[evaluation maps]], def. \ref{EvalMap}: \begin{displaymath} [Y, Z] \times [X , Y] \times X \stackrel{(id_{[Y,Z]}, eval_{X,Y})}{\to} [Y,Z] \times Y \stackrel{eval_{Y,Z}}{\to} Z \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{BasicProperties}{}\subsubsection*{{Basic properties}}\label{BasicProperties} The internal homs in a [[symmetric monoidal category|symmetric]] [[closed monoidal category]] (Def. \ref{ClosedMonoidalCategory}) happen to share all the key abstract properties of ordinary (``external'') [[hom-functors]], even though this is not completely manifest from Def. \ref{ClosedMonoidalCategory}: \begin{prop} \label{InternalHomBifunctor}\hypertarget{InternalHomBifunctor}{} \textbf{([[internal hom]] [[bifunctor]])} Let $\mathcal{C}$ be a [[symmetric monoidal category]] such that for each object $X \in \mathcal{C}$ the functor $X \otimes (-)$ has a [[right adjoint]] $[X,-]$. Then this is already equivalent to Def. \ref{ClosedMonoidalCategory}, in that there is a unique functor out of the [[product category]]of $\mathcal{C}$ with its [[opposite category]] \begin{displaymath} [-,-] \;\colon\; \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{C} \end{displaymath} such that for each $X \in \mathcal{C}$ it coincides with the [[internal hom]] $[X,-]$ as a functor in the second variable, and such that there is a [[natural isomorphism]] \begin{displaymath} Hom(X, [Y,Z]) \;\simeq\; Hom(X \otimes Y, Z) \end{displaymath} which is natural not only in $X$ and $Z$, but also in $Y$. \end{prop} \begin{proof} We have a natural isomorphism for each fixed $Y$, and hence in particular for fixed $Y$ and fixed $Z$. With this the statement follows directly by \href{https://ncatlab.org/nlab/show/adjoint%20functor#AdjointFunctorFromObjectwiseRepresentingObject}{this prop.} at \emph{[[adjoint functor]]}. \end{proof} In fact the 3-variable adjunction from Prop. \ref{InternalHomBifunctor} even holds internally: \begin{prop} \label{TensorHomAdjunctionIsoInternally}\hypertarget{TensorHomAdjunctionIsoInternally}{} \textbf{(internal tensor/hom-adjunction)} In a [[symmetric monoidal category|symmetric]] [[closed monoidal category]] (def. \ref{ClosedMonoidalCategory}) there are [[natural isomorphisms]] \begin{displaymath} [X \otimes Y, Z] \;\simeq\; [X, [Y,Z]] \end{displaymath} whose image under $Hom_{\mathcal{C}}(1,-)$ are the defining [[natural bijections]] of Prop. \ref{InternalHomBifunctor}. \end{prop} \begin{proof} Let $A \in \mathcal{C}$ be any object. By applying the natural bijections from Prop. \ref{InternalHomBifunctor}, there are composite [[natural bijections]] \begin{displaymath} \begin{aligned} Hom_{\mathcal{C}}(A , [X \otimes Y, Z]) & \simeq Hom_{\mathcal{C}}(A \otimes (X \otimes Y), Z) \\ & \simeq Hom_{\mathcal{C}}((A \otimes X)\otimes Y, Z) \\ & \simeq Hom_{\mathcal{C}}(A \otimes X, [Y,Z]) \\ & \simeq Hom_{\mathcal{C}}(A, [X, [Y,Z]]) \end{aligned} \end{displaymath} Since this holds for all $A$, the [[fully faithful functor|fully faithfulness]] of the [[Yoneda embedding]] says that there is an isomorphism $[ X\otimes Y, Z ] \simeq [X, [Y,Z]]$. Moreover, by taking $A = 1$ in the above and using the left [[unitor]] isomorphisms $A \otimes (X \otimes Y) \simeq X \otimes Y$ and $A\otimes X \simeq X$ we get a [[commuting diagram]] \begin{displaymath} \itexarray{ Hom_{\mathcal{C}}(1, [X\otimes Y, Z )) &\overset{\simeq}{\longrightarrow}& Hom_{\mathcal{C}}(1, [X, [Y,Z]]) \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ Hom_{\mathcal{C}}(X \otimes Y, Z) &\overset{\simeq}{\longrightarrow}& Hom_{\mathcal{C}}(X, [Y,Z]) } \,. \end{displaymath} \end{proof} Also the key respect of [[hom-functors]] for [[limits]] is inherited by [[internal hom]]-functors: \begin{prop} \label{InternalHomPreservesLimits}\hypertarget{InternalHomPreservesLimits}{} \textbf{([[internal hom-functor preserves limits]])} Let $\mathcal{C}$ be a [[symmetric monoidal category|symmetric]] [[closed monoidal category]] with [[internal hom]]-[[bifunctor]] $[-,-]$ (Prop. \ref{InternalHomBifunctor}). Then this bifunctor preserves [[limits]] in the second variable, and sends colimits in the first variable to limits: \begin{displaymath} [X, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Y(j)] \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [X, Y(j)] \end{displaymath} and \begin{displaymath} [\underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j),X] \;\simeq\; \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j),X] \end{displaymath} \end{prop} \begin{proof} For $X \in \mathcal{C}$ any object, $[X,-]$ is a [[right adjoint]] by definition, and hence preserves limits by \emph{[[adjoints preserve (co-)limits]]}. For the other case, let $Y \;\colon\; \mathcal{L} \to \mathcal{C}$ be a [[diagram]] in $\mathcal{C}$, and let $C \in \mathcal{C}$ be any object. Then there are isomorphisms \begin{displaymath} \begin{aligned} Hom_{\mathcal{C}}(C, [ \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X ] ) & \simeq Hom_{\mathcal{C}}( C \otimes \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X ) \\ & \simeq Hom_{\mathcal{C}}( \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} (C \otimes Y(j)), X ) \\ & \simeq \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Hom_{\mathcal{C}}( (C \otimes Y(j)), X ) \\ & \simeq \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} Hom_{\mathcal{C}}( C, [Y(j), X] ) \\ & \simeq Hom_{\mathcal{C}}( C, \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j), X] ) \end{aligned} \end{displaymath} which are [[natural isomorphism|natural]] in $C \in \mathcal{C}$, where we used that the ordinary [[hom-functor]] respects (co)limits as shown (see at \emph{[[hom-functor preserves limits]]}), and that the [[left adjoint]] $C \otimes (-)$ preserves colimits (see at \emph{[[adjoints preserve (co-)limits]]}). Hence by the [[fully faithful functor|fully faithfulness]] of the [[Yoneda embedding]], there is an isomorphism \begin{displaymath} \left[ \underset{\underset{j \in \mathcal{J}}{\longrightarrow}}{\lim} Y(j), X \right] \overset{\simeq}{\longrightarrow} \underset{\underset{j \in \mathcal{J}}{\longleftarrow}}{\lim} [Y(j), X] \,. \end{displaymath} \end{proof} \hypertarget{relation_to_function_types}{}\subsubsection*{{Relation to function types}}\label{relation_to_function_types} The internal hom is the [[categorical semantics]] of what in [[type theory]] are [[function types]] [[!include function type natural deduction - table]] \hypertarget{induced_monad_state_monad}{}\subsubsection*{{Induced monad (state monad)}}\label{induced_monad_state_monad} For each object $S$ the (internal hom $\dashv$ [[tensor product]])-[[adjunction]] induces a [[monad]] $[S, S \otimes (-)]$. In [[computer science]] this [[monad (in computer science)]] is called the \emph{[[state monad]]}. \hypertarget{StableSplitting}{}\subsubsection*{{Stable splitting}}\label{StableSplitting} In [[topology]] the [[stabilization]]/[[suspension spectrum]] $\Sigma^\infty Maps(X,A)$ of [[mapping spaces]] $Maps(X,A)$ between suitable [[CW-complexes]] $X, A$ happens to decompose as a [[direct sum]] of [[spectra]] in a useful way, related to the expression of the [[Goodwillie derivatives]] of the functor $Maps(X,-)$. For more on this see at \emph{[[stable splitting of mapping spaces]]}. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{in_sets}{}\subsubsection*{{In sets}}\label{in_sets} In the category [[Set]] of [[sets]], regarded as a [[cartesian monoidal category]], the internal hom is given by [[function sets]]. This exists, by the discussion there, as soon as the [[foundations|foundational]] [[axioms]] are strong enough, for instance as soon as there are [[power objects]], which is the special case of a function set into the 2-element set. \hypertarget{in_simplicial_sets}{}\subsubsection*{{In simplicial sets}}\label{in_simplicial_sets} In the category [[sSet]] of [[simplicial sets]], the internal hom between two [[simplicial sets]] $X,Y$ is given by the formula \begin{displaymath} [X,Y]_n = Hom_{sSet}(X\times \Delta[n],Y) \,, \end{displaymath} where $\Delta[n]$ is the simplicial [[n-simplex]]. This $[X,Y] \in sSet$ is also called the \emph{[[function complex]]} between $X$ and $Y$. Since $sSet \simeq PSh(\Delta)$ is the [[category of presheaves]] over the [[simplex category]], this is a special case of internal homs in sheaf toposes, discussed \hyperlink{InASheafTopos}{below}. \hypertarget{InASheafTopos}{}\subsubsection*{{In a sheaf topos or $(\infty,1)$-sheaf $(\infty,1)$-topos}}\label{InASheafTopos} Let $C$ be a [[site]]. Let $\mathbf{H} = Sh(C)$ be the [[sheaf topos]] over $C$ or in fact the [[(∞,1)-sheaf (∞,1)-topos]]. We discuss the internal hom of this regard as a [[cartesian monoidal category]]/[[cartesian monoidal (∞,1)-category]]. \begin{prop} \label{}\hypertarget{}{} The sheaf topos $\mathbf{H}$ is a [[cartesian closed category]] / [[cartesian closed (∞,1)-category]]. In fact it is a [[locally cartesian closed category]] / [[locally cartesian closed (∞,1)-category]]. \end{prop} Hence the internal hom exist. =-- \begin{prop} \label{InternalHomInSheaves}\hypertarget{InternalHomInSheaves}{} For $X, Y \in \mathbf{H}$ two [[objects]], the internal hom-object \begin{displaymath} [X,Y] \in \mathbf{H} \end{displaymath} is the [[sheaf]]/[[(∞,1)-sheaf]] given by the assignment \begin{displaymath} [X,Y] : U \mapsto \mathbf{H}(U \times X, Y) \,, \end{displaymath} for all objects $U \in C$ which on the right we regard under the [[Yoneda embedding]]/[[(∞,1)-Yoneda lemma|∞-Yoneda embedding]] $U \in C \stackrel{Yoneda}{\hookrightarrow} \mathbf{H}$. Here \begin{itemize}% \item $U \times X \in \mathbf{H}$ is the [[cartesian product]] if $U$ with $X$ \item $\mathbf{H}(-,-)$ is the [[hom set]]-[[functor]] / [[derived hom-space|hom space]]-[[(∞,1)-functor]] of $\mathbf{H}$. \end{itemize} \end{prop} See also at \emph{[[closed monoidal structure on presheaves]]}. \begin{proof} By the [[Yoneda lemma]]/[[(∞,1)-Yoneda lemma]] we have [[natural equivalences]] \begin{displaymath} [X,Y](U) \simeq \mathbf{H}(U , [X,Y]) \end{displaymath} and by the defining $((-)\times X \vdash [X,-])$[[adjunction]] this is naturally equivalent to \begin{displaymath} \cdots \simeq \mathbf{H}(U \times X, Y) \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} In the ([[homotopy type theory|homotopy]]-)[[type theory]] [[syntax]] of the [[internal language]] of $\mathbf{H}$ the internal hom $[X, Y] \in \mathbf{H}$ is the [[categorical semantics]] of the [[function type]] \begin{displaymath} \vdash (X \to Y) : Type \,. \end{displaymath} \end{remark} \begin{prop} \label{EvaluationOfInternalFunctionsInSheafTopos}\hypertarget{EvaluationOfInternalFunctionsInSheafTopos}{} For $X, Y \in \mathbf{H}$, the [[evaluation map]], def. \ref{EvalMap}, \begin{displaymath} eval_{X,Y} : [X,Y] \times X \to Y \end{displaymath} is the morphism of sheaves which over each $U \in C$ sends a morphism of sheaves $\theta : \mathbf{H}(-,U) \times X(-) \to Y(-)$ (which is the first component by prop. \ref{InternalHomInSheaves}) and an $x \in \mathbf{H}(U,X)$ to \begin{displaymath} eval_{X,Y}(U) : (\theta, x) \mapsto \theta_U(id_U, x) \in Y(U) \,. \end{displaymath} \end{prop} See (\hyperlink{MacLane-Moerdijk}{MacLane-Moerdijk, p. 46}). \begin{prop} \label{CompositionOfInternalFunctionsInSheafTopos}\hypertarget{CompositionOfInternalFunctionsInSheafTopos}{} For $X, Y, Z \in \mathbf{H}$ three [[objects]] of $\mathbf{H}$, the canonical [[composition]] [[morphism]], def. \ref{CompositionMorphism}, \begin{displaymath} \circ_{X,Y,Z} : [Y, Z] \times [X, Y] \to [X, Z] \end{displaymath} is given by the morphism of [[presheaves]]/[[(∞,1)-presheaves]] whose component over $U \in C$ is the morphism of [[sets]]/[[∞-groupoids]] \begin{displaymath} \circ_{X,Y,Z}(U) : \mathbf{H}(U \times X, Y) \times \mathbf{H}(U \times Y, Z) \to \mathbf{H}(U \times X, Z) \end{displaymath} which sends a pair $(f : U \times X \to Y, g : U \times Y \to Z)$ to the composite \begin{displaymath} \circ_{X,Y,Z}(U)(f,g) = U \times X \stackrel{(\Delta_U, id_X)}{\to} U \times U \times X \stackrel{(id_U, f)}{\to} U \times Y \stackrel{g}{\to} Z \,, \end{displaymath} where $\Delta_U : U \to U \times U$ is the [[diagonal]] morphism on $U$. \end{prop} \begin{proof} By definition \ref{CompositionMorphism} the morphism is the [[adjunct]] of the double [[evaluation map]] \begin{displaymath} [Y,Z] \times [X,Y] \times X \to Z \,. \end{displaymath} Since the [[cartesian product]] of two sheaves $A, B \in \mathbf{H}$ is computed objectwise \begin{displaymath} A \times B : U \mapsto A(U) \times B(U) \end{displaymath} it follows that over each $U \in C$ this double evaluation map is the morphism of sets/$\infty$-groupoids \begin{displaymath} [Y,Z](U) \times [X,Y](U) \times X(U) \to Z(U) \end{displaymath} hence by prop. \ref{InternalHomInSheaves} \begin{displaymath} \mathbf{H}(U \times Y, Z) \times \mathbf{H}(U \times X, Y) \times \mathbf{H}(U,X) \to \mathbf{H}(U,Z) \,, \end{displaymath} where now by prop. $\backslash$ref this is the external evaluation. \end{proof} \begin{remark} \label{}\hypertarget{}{} Intuitively this says that the composite of a $U$-parameterized family of maps $\{f(u) : X \to Y| u \in U\}$ with a $U$-parameterized family of maps ${g(u) : Y \to Z| u \in U}$ is the $U$-family given by the parameter-wise composite $\{g(u)\circ f(u) | u \in U\}$. \end{remark} \begin{example} \label{InternalAutomorphismGroup}\hypertarget{InternalAutomorphismGroup}{} The internal [[automorphism group]]/[[automorphism ∞-group]] of an [[object]] $X \in \mathbf{H}$ is the [[subobject]] \begin{displaymath} \mathbf{Aut}(X) \hookrightarrow [X,X] \end{displaymath} of the internal hom which is maximal subject to the property that the composition of prop. \ref{CompositionOfInternalFunctionsInSheafTopos} becomes invertible. The ([[homotopy type theory|homotopy]]-)[[type theory]] [[syntax]] for this is given by the [[type]] of [[equivalences in homotopy type theory]] \begin{displaymath} \vdash (X \stackrel{\simeq}{\to} X) : Type \,. \end{displaymath} \end{example} \hypertarget{ExampleInSliceCategories}{}\subsubsection*{{In slice categories}}\label{ExampleInSliceCategories} Let $\mathbf{H}$ be a [[locally cartesian closed category]]. This means that for each object $X \in \mathbf{H}$ the [[slice category]] $\mathbf{H}_{/X}$ is a [[cartesian closed category]]. The [[product]] in the slice is given by the [[fiber product]] over $X$ computed in $\mathbf{H}$. Fairly detailed discussion of constructions of the internal hom in such slices $\mathbf{H}_{/X}$ is at \emph{\href{locally%20cartesian%20closed%20category#EquivalentCharacterizations}{locally cartesian closed category -- cartesian closure in terms of base change and dependent product}}. We record some further properties \begin{prop} \label{InverseImageBaseChangeIsCartesianClosed}\hypertarget{InverseImageBaseChangeIsCartesianClosed}{} For $\mathcal{C}$ a [[locally cartesian closed category]] and $f \colon X \to Y$ any morphism in $\mathcal{C}$, the [[inverse image]] $f^*$ of the corresponding [[base change]] [[adjunction]] \begin{displaymath} \mathcal{C}_{/X} \stackrel{\overset{\sum_f}{\to}}{\stackrel{\overset{f^*}{\leftarrow}}{\underset{\prod_f}{\to}}} \mathcal{C}_{/Y} \end{displaymath} is a [[cartesian closed functor]]. \end{prop} This is discussed in more detail at \emph{\href{cartesian+closed+functor#Examples}{cartesian closed functor -- Examples}}. So for $A,B \in \mathcal{C}_{/Y}$ we have [[isomorphisms]] \begin{displaymath} f^* \left[A,B\right] \stackrel{\simeq}{\to} \left[f^* A , f^* B\right] \end{displaymath} between the image of the internal hom under $f^*$ and the internal hom of the images of $A$ and $B$ separately. \begin{prop} \label{MorphismFromDepProductOfFuncTypeToFuncTypeOfDepSum}\hypertarget{MorphismFromDepProductOfFuncTypeToFuncTypeOfDepSum}{} For $\mathbf{H}$ a [[locally cartesian closed category]], $f \colon X \to Y$ any [[morphism]], and $A, B \in \mathbf{H}_{/X}$ two objects in the slice over $X$, there is a natural morphism (not in general an isomorphism) \begin{displaymath} \prod_f \left[A,B \right] \to \left[ \sum_f A, \sum_f B\right] \,. \end{displaymath} \end{prop} Here are two ways to get this morphism: \begin{proof} For any object $U \in \mathbf{H}_{/Y}$ we have a canonical morphism of [[hom sets]] \begin{displaymath} \begin{aligned} \mathbf{H}_{/Y}( U, \prod_f [A,B] ) & \simeq \mathbf{H}_{/X}( f^* U, [A,B] ) \\ & \simeq \mathbf{H}_{/X}(f^* U \times A, B) \\ & \stackrel{}{\to} \mathbf{H}_{/Y}( \sum_f( f^* U \times A ), \sum_f B ) \\ & \stackrel{Frob.Rec.}{\simeq} \mathbf{H}_{/Y}( U \times \sum_f A , \sum_f B ) \\ & \simeq \mathbf{H}_{/Y}(U, [\sum_f A , \sum_f B]) \end{aligned} \end{displaymath} where the first and the last steps use [[adjunction]] properties, where the morphism in the middle is the component of the [[dependent sum]] functor, and where ``Frob.Rec.'' is [[Frobenius reciprocity]]. Since this is [[natural transformation|natural]] in $U$, the [[Yoneda lemma]] implies the claimed morphism. \end{proof} \begin{proof} There is the composite morphism \begin{displaymath} \left(f^\ast \prod_f [A, B]\right) \times A \stackrel{counit \times id_A}{\to} [A, B] \times A \stackrel{eval}{\to} B \stackrel{unit}{\to} f^\ast \sum_f B \end{displaymath} of the [[unit of an adjunction|adjunction (co)units]] and the [[evaluation map]] of the internal hom. Its hom-[[adjunct]] is \begin{displaymath} A \to [f^\ast \prod_f [A, B], f^\ast \sum_f B] \cong f^\ast [\prod_f [A, B], \sum_f B] \,, \end{displaymath} using prop. \ref{InverseImageBaseChangeIsCartesianClosed} on the right. The hom-adjunct of that in turn is \begin{displaymath} \sum_f A \to [\prod_f [A, B], \sum_f B] \end{displaymath} and by symmetry the morphism that we are after: \begin{displaymath} \prod_f [A, B] \to [\sum_f A, \sum_f B] \,. \end{displaymath} \end{proof} \begin{remark} \label{RememberingTopMorphismInHomInSlice}\hypertarget{RememberingTopMorphismInHomInSlice}{} If $Y$ is the [[terminal object]] (for simplicity), then the morphism of prop. \ref{MorphismFromDepProductOfFuncTypeToFuncTypeOfDepSum} can be understood as follows: a [[global element]] of the [[dependent product]] $\prod_f [A,B]$ is given by a [[commuting diagram]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ \sum_f A &&\to&& \sum_f B \\ & \searrow && \swarrow \\ && X } \,. \end{displaymath} The map in prop. \ref{MorphismFromDepProductOfFuncTypeToFuncTypeOfDepSum} picks out the top horizontal morphism in this diagram. \end{remark} \hypertarget{for_smooth_spaces_and_smooth_groupoids}{}\subsubsection*{{For smooth spaces and smooth $\infty$-groupoids}}\label{for_smooth_spaces_and_smooth_groupoids} Consider the [[site]] $C =$ [[SmthMfd]] of [[smooth manifolds]] (and the [[open cover]] [[coverage]]) or equivalently over the [[dense subsite]] [[CartSp]] of [[Cartesian spaces]] and [[smooth functions]] between these. The [[sheaf topos]]/[[(∞,1)-sheaf (∞,1)-topos]] $\mathbf{H} = Sh(C)$ is that of [[smooth spaces]]/[[smooth ∞-groupoids]]. So the discussion of internal homs here is a special case of the above discussion \emph{\hyperlink{InASheafTopos}{In a sheaf topos}}. \begin{example} \label{}\hypertarget{}{} For $X , Y \in SmthMfd \hookrightarrow \mathbf{H}$ two [[smooth manifolds]], the [[internal hom]] $[X,Y] \in \mathbf{H}$ is the [[mapping space]] between them regarded as a [[diffeological space]]. See at \emph{[[manifold structure of mapping spaces]]} for when this internal hom is [[representable functor|representable]] again by a [[smooth manifold]]. \end{example} \begin{example} \label{}\hypertarget{}{} For $X \in SmthMfd \hookrightarrow \mathbf{H}$ the internal automorphism group, example \ref{InternalAutomorphismGroup}, of $X$ is the [[diffeomorphism group]] of $X$, regarded as a [[diffeological space|diffeological]] group \begin{displaymath} \mathbf{Aut}(X) = \mathbf{Diff}(X) \,. \end{displaymath} \end{example} \hypertarget{for_chain_complexes}{}\subsubsection*{{For chain complexes}}\label{for_chain_complexes} \begin{itemize}% \item [[internal hom of chain complexes]] \end{itemize} \hypertarget{for_super_vector_spaces}{}\subsubsection*{{For super vector spaces}}\label{for_super_vector_spaces} The category $sVect$ of [[super vector spaces]] is the category of $\mathbb{Z}/2$-[[graded vector spaces]]. Thus, its objects are pairs of vector spaces $(V_+,V_-)$, with $V_+$ called the \emph{even} part and $V_-$ the \emph{odd} part. The morphisms in $sVect$ are likewise pairs of linear maps, i.e. we define $sVect$ to be $Vect \times Vect = Vect^{\mathbb{Z}/2}$, as usual for any sort of graded object. With this definition of the category $sVect$, we capture the concepts of superalgebra and so on in succinct categorical terms. Because the morphisms in $sVect$ send even things to even things and odd things to odd things, they are sometimes called \emph{even} linear maps, and one may write \begin{displaymath} sVect(V, W) = Even Lin(V,W). \end{displaymath} Note that $sVect$ is [[enriched category|enriched]] over $Vect$, i.e. these hom-sets are vector spaces. Occasionally, however, one does need to refer to the \emph{odd} linear maps, which send even things to odd things and odd things to even things. That is, an odd linear map $V\to W$ is a pair of linear maps $V_+ \to W_-$ and $V_-\to W_+$. The internal-hom in $sVect$ allows us to capture these as well: it is the following super vector space: \begin{displaymath} [V,W]_+ = Even Lin(V,W) \qquad [V,W]_- = Odd Lin(V,W). \end{displaymath} With this definition, $sVect$ becomes a [[closed monoidal category]]. We can equivalently regard a super vector spaces $(V_+,V_-)$ as being the [[direct sum]] vector space $V_+ \oplus V_-$ equipped with this direct sum decomposition. If we view the internal-hom $[V,W]$ in this way as well, then we have \begin{displaymath} [V, W] = Even Lin(V,W) \oplus Odd Lin(V,W) = Lin(V,W). \end{displaymath} In other words, any linear map between these ``summed'' super vector spaces decomposes uniquely as the sum of an even linear map and an odd one. \hypertarget{for_banach_spaces}{}\subsubsection*{{For Banach spaces}}\label{for_banach_spaces} A similar thing happens in the category $Ban$ of [[Banach spaces]] and [[short linear operators]]. The external hom consists of only the \emph{short} linear maps (those bounded by $1$): \begin{displaymath} Ban(V,W) = \{ f\colon Lin(V,W) \;|\; {\|f\|} \leq 1 \} . \end{displaymath} This definition of morphism recovers the most specific notion of [[isomorphism]] of Banach spaces, as well as defining the [[product]] and [[coproduct]] as the [[direct sum]] completed with $p = \infty$ or $p = 1$ respectively. But the internal hom is the Banach space of \emph{all} bounded linear maps: \begin{displaymath} [V,W] = \{ f\colon Lin(V,W) \;|\; {\|f\|} \lt \infty \} . \end{displaymath} This is a Banach space and makes $Ban$ into a [[closed category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[hom-set]], [[hom-object]] \item [[hom-functor]] \item [[enriched hom-functor]] \item [[derived hom-functor]] \item [[function type]] \begin{itemize}% \item [[implication]], [[linear implication]] \end{itemize} \item [[power object]], [[exponential object]] \item [[function monad]] \item [[exponential law for spaces]] \item [[closed category]], [[cartesian closed category]] \item [[strong adjoint functor]] \item [[mapping stack]] \item [[space of sections]] \item [[pointed mapping space]] \item [[distributions are the smooth linear functionals]] \item [[Sullivan model of mapping space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} A discussion query (R. Brown, T. Bartels, M. Shulman) about internal hom is at $n$Forum \href{http://www.math.ntnu.no/~stacey/Mathforge/nForum/comments.php?DiscussionID=3372&Focus=27648}{here}. [[!redirects internal homs]] [[!redirects inner hom]] [[!redirects inner homs]] [[!redirects internal-hom]] [[!redirects internal-homs]] [[!redirects mapping space]] [[!redirects mapping spaces]] [[!redirects exponential law]] [[!redirects exponential laws]] [[!redirects internal hom-functor]] [[!redirects internal hom-functors]] [[!redirects internal hom functor]] [[!redirects internal hom functors]] \end{document}