\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{internal infinity-groupoid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{internal_categories}{}\paragraph*{{Internal $(\infty,1)$-Categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{KanInoo1Cat}{Internal $\infty$-groupoids in an $(\infty,1)$-category}\dotfill \pageref*{KanInoo1Cat} \linebreak \noindent\hyperlink{KanIn1Cat}{Kan complexes in an ordinary category}\dotfill \pageref*{KanIn1Cat} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{InternalHornFillers}{Internal horn filler condition}\dotfill \pageref*{InternalHornFillers} \linebreak \noindent\hyperlink{SimplicialSheaves}{In terms of simplicial sheaves}\dotfill \pageref*{SimplicialSheaves} \linebreak \noindent\hyperlink{Comparison}{Comparison}\dotfill \pageref*{Comparison} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} A notion of \emph{internal [[∞-groupoid]]} is a [[vertical categorification]] of [[internal groupoid]]. As described at that entry on [[vertical categorification]], there is some flexibility possible in exactly what one may mean by this, depending for instance on which of several definitions of ordinary [[groupoid]]s one starts with, and how one deals with the higher coherences that are introduced upon categorification. One very general notion of internal $\infty$-groupoid is given by taking some standard definition of $\infty$-groupoid and writing it down internally to an [[(∞,1)-category]]. This is described below in the section \begin{itemize}% \item \hyperlink{KanInoo1Cat}{∞-groupoids internal to an (∞,1)-category}. \end{itemize} For various applications somewhat stricter or at least more rigidified models for this may be useful. Notably one may wish to speak of $\infty$-groupoids internal to an ordinary category. In terms of [[Kan complexes]] as a model for ordinary [[∞-groupoids]], this is discussed below in the section \begin{itemize}% \item \hyperlink{KanIn1Cat}{Kan complexes internal to an ordinary category}. \end{itemize} Notice from the discussion there that these two aspects may and often do interplay: simplicial objects in [[Grothendieck topos|sheaf topos]]es may be used to [[presentable (infinity,1)-category|present]] [[(∞,1)-category|(∞,1)-categories]] inside of which one may be interested in $\infty$-groupoid objects in the first sense. For instance a Lie $\infty$-group object is usefully thought of as a \emph{group object} internal to the [[(∞,1)-topos]] presented by [[model structure on simplicial presheaves|a model of simplicial sets in]] the [[category of sheaves]] on [[Diff]]. Finally, a simplified version of [[∞-groupoid]] is often sufficient and useful: that given by [[strict omega-groupoid|strict ∞-groupoid]]s, equivalently [[crossed complexes]]. These may be straightforwardly [[internalization|internalized]] in any ordinary category with [[pullback]]s. This is discussed in \begin{itemize}% \item \hyperlink{Strict}{Internal strict $\infty$-groupoids} \end{itemize} Under the internal [[omega-nerve]] operation this will embed into the definition of Kan complexes in an ordinary category mentioned before. Even if one is interested just in strict $\infty$-groupoids, this embedding is useful in order to understand what the right notion of morphisms between these objects is, and what the extra [[descent]] conditions are that a proper internal formulation turns out to require on top of the conditions known from the external formulation (all this is discussed below). For that purpose [[Dominic Verity]]`s theorem described at \begin{itemize}% \item [[Verity on descent for strict omega-groupoid valued presheaves]] \end{itemize} is very useful. \hypertarget{KanInoo1Cat}{}\subsection*{{Internal $\infty$-groupoids in an $(\infty,1)$-category}}\label{KanInoo1Cat} The special case of internal \emph{1-groupoids} in an (∞,1)-category, which are still only associative and unital up to higher homotopy, but which do not include ``higher cells'' as additional data, is discussed in detail at: \begin{itemize}% \item [[groupoid object in an (∞,1)-category]]. \end{itemize} The general case remains to be explored. \hypertarget{KanIn1Cat}{}\subsection*{{Kan complexes in an ordinary category}}\label{KanIn1Cat} A standard model for general [[∞-groupoid]]s is given by [[simplicial set]]s that are [[Kan fibration|Kan fibrant]]: [[Kan complex]]es. It is straightforward to [[internalization|internalize]] the [[horn]]-filler condition that characterizes [[Kan complex]]es from the [[category]] [[SSet]] of [[simplicial object]]s in [[Set]] to one of [[simplicial objects]] in any category $C$ with a bit of suitable structure. \begin{itemize}% \item This is described in \hyperlink{InternalHornFillers}{Internal horn filler condition}, below. \end{itemize} But for the [[simplicial object]]s in question to be usefully identified as [[∞-groupoid]]s internal to $C$, the horn filler condition is -- while necessary -- typically not sufficient. At least one has to be a bit careful about what it is one wants to model. A very well understood special case that serves to give some feeling for the general situation is that where $C$ is a [[Grothendieck topos]]. In that case [[simplicial object]]s in $C$ are [[simplicial presheaf|simplicial sheaves]]. There is a well developed theory of [[model structure on simplicial presheaves|model structures on simplicial sheaves]] that are known to be [[models for ∞-stack (∞,1)-toposes]]. \begin{itemize}% \item This is described in \hyperlink{SimplicialSheaves}{Simplicial sheaves}, below. \end{itemize} In terms of this the true $\infty$-groupoids internal to $C$ are those simplicial sheaves that are fibrant objects in the given [[model category]]. These fibrant simplicial sheaves in particular satisfy the internal Kan filler conditon, but they are characterized by a much stronger condition: in addition they satisfy a [[descent]] condition. \begin{itemize}% \item This is described in \hyperlink{Comparison}{Comparison}, below. \end{itemize} Another issue highlighted by this example is that the right notion of morphisms of internal Kan complexes are not just the internal morphisms of simplicial objects: for the case of $C$ a Grothendieck topos and using the model structure on simplicial sheaves as above, the right notion of morphism between two internal Kan complexes $X$ and $A$ is a morphism of simplicial objects $\hat X \to A$ out of a cofibrant replacement of $X$, as discussed at [[derived hom space]]. So the right notion of morphisms of internal $\infty$-groupoids are $\infty$-[[anafunctor]]s. A little bit of theory for this exists for the slightly more general case that $C$ is an arbitrary [[elementary topos]]. See [[model structure on simplicial objects in a topos]]. For more general $C$ not much is known. \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} \hypertarget{InternalHornFillers}{}\paragraph*{{Internal horn filler condition}}\label{InternalHornFillers} The [[Kan complex]] definition of [[∞-groupoid]] may be [[internalization|internalized]] to more general categories. Namely: \begin{itemize}% \item We can define a [[simplicial object]] $X$ in any [[category]] $C$, as a [[contravariant functor]] to $C$ from the [[simplex category]] $\Delta$; \item Given a simplicial object $X$, we define the object $X^{\Lambda^n_k}$ of $k$-horns of $n$-simplices of $X$ (if it exists) as the [[weighted limit]] of $X\colon \Delta^{op} \to C$ weighted by the standard horn (thought of as a simplicial set) $\Lambda^n_k\colon \Delta^{op} \to Set$. \item If we have a distinguished class of `surjections', then we require that each morphism $X_n \to X^{\Lambda^n_k}$ is `surjective'. \end{itemize} In particular, if $C$ is a [[left exact category]] equipped with a [[Grothendieck pretopology]], then the limits in (2) exist and one can choose single arrow coverings as distinguished `surjections'. So we define a \textbf{[[Kan object]]} in such a $C$ to be a simplicial object in $C$ satisfying the Kan conditions (3). Then we may define an \textbf{$\infty$-groupoid in $C$} to be simply a Kan object in $C$. (Recall that one way to define an ordinary $\infty$-groupoid is as a [[Kan complex]], that is a Kan object in [[Set]].) Another, almost equivalent, way to describe the Kan conditions expressed in this way is by saying that ``the Kan conditions are satisfied'' is true in the [[internal logic]] of the [[site]] $C$, or equivalently the internal logic of its [[Grothendieck topos]] of sheaves (after applying the [[Yoneda embedding]] to obtain a simplicial object in this topos). Of course, if $C$ is itself a Grothendieck topos, then it is equivalent to the topos of sheaves on itself for its [[canonical topology]]. (This is only ``almost equivalent'' if the Grothendieck pretopology is in fact a topology.) \hypertarget{SimplicialSheaves}{}\paragraph*{{In terms of simplicial sheaves}}\label{SimplicialSheaves} If the category $C$ is a [[Grothendieck topos]], i.e. a [[category of sheaves]] (of sets) $C = Sh(S)= Sh(S,Set)$ on some small [[site]], then [[simplicial object]]s in $C$ are the same as [[simplicial sheaves]] on $S$ \begin{displaymath} [\Delta^{op}, C)] \simeq Sh(S, SSet) \,. \end{displaymath} There are various ([[Quillen equivalence|Quillen equivalent]]) [[model category]] structures on the categories of simplicial sheaves or presheaves on a small site; see [[model structure on simplicial presheaves]] and [[model structure on simplicial sheaves]] for more. An $\infty$-groupoid in $C$ may be taken to be a fibrant object with respect to one of these model category structures. \hypertarget{Comparison}{}\paragraph*{{Comparison}}\label{Comparison} The two definitions are \emph{not} equivalent even when $C$ is a Grothendieck topos; the second is strictly stronger. Consider, for instance, a Grothendieck topos $C = Sh(S)$ and an [[internal groupoid]] in $C$, i.e. a sheaf of groupoids on $S$, but which is not a [[stack]]. Then the [[nerve]] of this internal groupoid will satisfy the Kan conditions in the sense of the first definition (by repeating the usual proof that the nerve of a groupoid is a Kan complex in the internal logic), but it will not be fibrant as a simplicial sheaf (since it is not a stack). On the other hand, it is true that every fibrant simplicial sheaf satisfies the Kan conditions in the internal logic, by the following argument: \begin{enumerate}% \item The fibrant objects in any local [[model structure on simplicial sheaves]] in particular have the property that they are sheaves with values in Kan complexes. Here a reminder on why this is so. The local [[model structure on simplicial sheaves|model structures on simplicial sheaves]] are left [[Bousfield localization]]s of the injective or projective [[global model structure on functors]]. So their fibrant objects are in particular fibrant in $[S^{op},SSet]_{proj/inj}$. The fibrant objects in $[S^{op}, SSet]_{proj}$ are (by definition of projective fibrations) precisely the objectwise Kan complexes. The fibrant objects in $[S^{op},SSet]_{inj}$ are less, but still contained in the collection of objectwise Kan complexes. So also the fibrant objects in $Sh(S,SSet)_{inj,proj}^{loc}$ are in particular Kan complex valued sheaves (that in addition satisfy a [[descent]] condition). \item The [[weighted limit]]s over simplicial sheaves, or analogously the [[power]]ing of $Sh(S,SSet)$ over [[SSet]] works objectwise, so that for $X \in Sh(S,SSet)$ we have \begin{displaymath} X^{\Lambda_k[n]} : U \mapsto SSet(\Lambda_k[n],X(U)) \end{displaymath} and of course \begin{displaymath} X_n = X^{\Delta[n]} : U \mapsto SSet(\Delta[n],X(U)) = X(U)_n \,. \end{displaymath} \end{enumerate} Therefore fibrant $X \in Sh(S,SSet)$ have the property that for all $n, k$ the canonical morphism $X_n \to X^{\Lambda_k[n]}$ is a surjection when pulled back to any representable $U \to X$. In particular, the morphism is a [[stalk]]wise epimorphism, hence an [[epimorphism]] of sheaves. Note that the local model structure on simplicial sheaves also contains information about the \emph{cofibrant} objects, which (it can be argued) are necessary to get the right notion of \emph{morphism} between ``internal $\infty$-groupoids.'' Every Kan complex in $Set$ is cofibrant, but the same cannot be expected to be true everywhere, and in general a (weak) ``internal $\infty$-functor'' should be expected to be a map out of a cofibrant replacement. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} Here are some examples of internal $\infty$-groupoids according to the first definition (that is, internal Kan complexes). \begin{itemize}% \item A classical example consists of the \textbf{topological $\infty$-groupoids}. The [[nerve]] construction makes a topological $\infty$-groupoid from a [[topological groupoid]]. This is actually a characterization of topological groupoids among topological categories. \item In particular, if $G$ is a [[topological group]], then $N(\mathbf{B}G)$ is a topological $\infty$-groupoid. This is relevant to the construction of the [[classifying spaces]] for continuous [[principal bundles]]. \item Another classical example consists of the [[∞-Lie groupoids]]. \item [[topological infinity-groupoid]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[groupoid object in an (infinity,1)-category]] \item [[internal (infinity,1)-category]] \item [[Kan-fibrant simplicial manifold]] \item [[geometric infinity-stack]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Models for [[∞-stacks]]/[[(∞,1)-presheaves]] in [[higher geometry]] by local Kan complexes of objects in a given site (for instance locally Kan [[simplicial manifolds]] for [[higher differential geometry]]) are discussed in \begin{itemize}% \item [[Thomas Nikolaus]], [[Urs Schreiber]], [[Danny Stevenson]], \emph{Principal $\infty$-bundles - Presentations} (\href{http://arxiv.org/abs/1207.0249}{arXiv:1207.0249}) \end{itemize} [[!redirects Internal infinity-groupoid]] [[!redirects Internal infinity-groupoids]] [[!redirects Internal ∞-groupoid]] [[!redirects internal ∞-groupoid]] [[!redirects infinity-groupoid object]] [[!redirects ∞-groupoid object]] [[!redirects internal Kan complex]] [[!redirects internal-infinity groupoids]] [[!redirects internal infinity-groupoids]] \end{document}