\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{internal site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{externalization}{Externalization}\dotfill \pageref*{externalization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of [[site]] may be [[internalization|internalized]] in any [[topos]] to yield a notion of \emph{internal site}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The definition of internal site is obvious and straightforward. \begin{defn} \label{}\hypertarget{}{} For $\mathcal{E}$ a [[topos]], an \textbf{internal site} in $\mathcal{E}$ is an [[internal category]] $\mathbb{C} = C_1 \rightrightarrows C_0$ equipped with an internal [[coverage]]. \end{defn} Spelled out in components, this means the following (as in (\hyperlink{Johnstone}{Johnstone}), we shall only define \emph{sifted} coverages). First, we define the [[subobject]] $Sv(\mathbb{C}) \hookrightarrow PC_1$ of \emph{[[sieves]]}, where a subobject $S \hookrightarrow C_1$ is a sieve if the composite \begin{displaymath} S\times_{C_0} C_1 \to C_1\times_{C_0} C_1 \to C_1 \end{displaymath} factors through $S$. Also recall the usual membership relation $\in_{C_1} \stackrel{(n,e)}{\to} PC_1 \times C_1$. \begin{defn} \label{}\hypertarget{}{} An \emph{internal sifted coverage} is given by a span $C_0 \stackrel{b}{\leftarrow} T \stackrel{c}{\to} Sv(\mathbb{C})$ subject to: \begin{itemize}% \item The square \begin{displaymath} \itexarray{ T \times_{PC_1} \in_{C_1} & \stackrel{e pr_2}{\to} & C_1 \\ {}^{pr_1}\downarrow & {} & \downarrow^{s} \\ T & \stackrel{b}{\to} & C_0 } \end{displaymath} commutes, where the pullback in the top left corner is of the map $\in_{C_1} \to PC_1$ along $T \to Sv(\mathbb{C}) \hookrightarrow PC_1$. \item If we define the subobject $Q\hookrightarrow T\times_{C_0} C_1 \times_{C_0} T$ as \begin{displaymath} Q := \{(t',a,t) | aa' \in t \forall a'\in t'\} \end{displaymath} (in the internal language), the composite $Q \hookrightarrow T\times_{C_0} C_1 \times_{C_0} T \stackrel{pr_{23}}{\to} C_1 \times_{C_0} T$ is required to be an epimorphism. \end{itemize} \end{defn} We can additionally ask that more saturation conditions (as discussed at [[coverage]]) hold. (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{externalization}{}\subsubsection*{{Externalization}}\label{externalization} We discuss how to every internal site there is a corresponding external site such that the [[internal sheaf topos]] on the former agrees with the external sheaf topos on the latter. \begin{defn} \label{TheExternalizedSite}\hypertarget{TheExternalizedSite}{} Let $\mathcal{C}$ be a [[small category]] and let $\mathcal{E} := [\mathcal{C}^{op}, Set]$ be its [[presheaf topos]]. Let $\mathbb{D} \in \mathcal{E}$ be an internal site. Regarded, by the [[Yoneda lemma]], as a functor $\mathbb{D} : \mathcal{C}^{op} \to Cat$, this induces via the [[Grothendieck construction]] a [[fibered category]] which we denote \begin{displaymath} \mathcal{C} \rtimes \mathbb{D} \to \mathcal{C} \,. \end{displaymath} \end{defn} This is reviewed for instance in (\hyperlink{Johnstone}{Johnstone, p. 596}). The notation is motivated from the following example. \begin{example} \label{}\hypertarget{}{} Let $G$ be a [[group]] (in [[Set]], hence a [[discrete group]]) and let $\mathcal{C} := \mathbf{B}G$ be its [[delooping]] [[groupoid]]. Then \begin{displaymath} \mathcal{E} \simeq [\mathbf{B}G , Set] \end{displaymath} is the topos of [[permutation representation]]s of $G$. Let $H \in \mathcal{E}$ be a [[group object]]. This is equivalently a group in $Set$ equipped with a $G$-[[action]]. Its internal delooping gives the [[internal groupoid]] $\mathbb{D} := \mathcal{B}H$ in $\mathcal{E}$. In this case we have that \begin{displaymath} \mathcal{C} \rtimes \mathbb{D} \simeq \mathbf{B}(G \rtimes H) \end{displaymath} is the delooping groupoid of the [[semidirect product]] group of the $G$-action on $H$. \end{example} Generally we have \begin{remark} \label{}\hypertarget{}{} The category $\mathcal{C} \rtimes \mathbb{D}$ from def. \ref{TheExternalizedSite} is described as follows: \begin{itemize}% \item [[object]]s are pairs $(U,V)$ with $U \in Ob \mathcal{C}$ and $V \in Ob \mathbb{D}(U)$; \item [[morphism]]s $(U',V') \to (U,V)$ are pairs $(a,b)$ where $a : U' \to U$ is in $\mathcal{C}$ and $b : V' \to \mathbb{D}(a)(V)$ in $\mathbb{D}(U')$. \end{itemize} \end{remark} \begin{prop} \label{}\hypertarget{}{} We have an [[equivalence of categories]] \begin{displaymath} [\mathbb{D}^{op}, [\mathcal{C}^{op}, Set]] \simeq [(\mathcal{C} \rtimes \mathbb{D})^{op}, Set] \end{displaymath} between the [[category of internal presheaves]] in $\mathcal{E}$ over the internal category $\mathbb{D}$, and external presheaves over the semidirect product site $\mathcal{C} \rtimes \mathbb{D}$. \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, lemma C2.5.3}). This result generalizes straightforwardly to an analogous statement for internal sheaves. \begin{defn} \label{CoverageOnTheExternalizedSite}\hypertarget{CoverageOnTheExternalizedSite}{} If $\mathcal{C}$ is equipped with a [[coverage]] $J$ and $\mathbb{D}$ is equipped with an internal coverage $K$ , define a coverage $J \rtimes K$ on $\mathcal{C} \rtimes \mathbb{D}$ by declaring that a [[sieve]] on an object $(U,V)$ is $(J \times K)$-covering if there exists an element $S \in K(U)$ with $b(S) = V$, \ldots{} \end{defn} \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{E} = Sh_J(\mathcal{C})$ be a [[sheaf topos]] and $(\mathbb{D}, K)$ an internal site in $\mathcal{E}$. Then with def. \ref{CoverageOnTheExternalizedSite} we have an [[equivalence of categories]] \begin{displaymath} Sh_{K}(\mathbb{D}) \simeq Sh_{J \rtimes K}(\mathcal{C} \rtimes \mathbb{D}) \end{displaymath} between [[internal sheaves]] in $\mathcal{E}$ on $\mathbb{D}$ and [[sheaf|external sheaves]] on the semidirect product site $J \rtimes K$. Moreover, the [[projection]] [[functor]] $P : \mathcal{C} \rtimes \mathbb{D}$ is [[cover-reflecting]] and induces a [[geometric morphism]] \begin{displaymath} \Gamma \colon Sh_K(\mathbb{D}) \stackrel{}{\to} \mathcal{E} \,. \end{displaymath} \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, prop. C2.5.4}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[site]] \item [[internal locale]], [[internal sheaf]] \item [[internalization]], [[internal logic]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section C2.4 and C2.5 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} The semidirect product externalization of internal sites is due to \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Continuous fibrations and inverse limits of toposes}, Composition Math. 68 (1986) (\href{http://www.numdam.org/item?id=CM_1986__58_1_45_0}{NUMDAM}) \end{itemize} [[!redirects internal sites]] \end{document}