\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{interpretation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{interpretations_of_theories_in_each_other}{Interpretations of theories in each other}\dotfill \pageref*{interpretations_of_theories_in_each_other} \linebreak \noindent\hyperlink{biinterpretations_of_theories}{Bi-interpretations of theories}\dotfill \pageref*{biinterpretations_of_theories} \linebreak \noindent\hyperlink{interpretations_of_models_in_each_other}{Interpretations of models in each other}\dotfill \pageref*{interpretations_of_models_in_each_other} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{classifying_topses}{Classifying topses}\dotfill \pageref*{classifying_topses} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[formal logic]] and [[model theory]], \emph{interpretation} refers to equipping the [[syntax]] of some [[theory]] with a [[semantics]]. Na\"i{}vely this means finding a model (in the category of sets) for the theory. This is subsumed by treating interpretations as functors out of [[syntactic categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In the language of [[categorical logic]], interpretations are representations of theories inside some category $\mathbf{C}$. Depending on the kind of theory ([[cartesian logic|cartesian]], [[regular logic|regular]], [[coherent logic|coherent]], [[first-order logic|first-order]], [[geometric logic|geometric]]), an interpretation of $T$ in $\mathbf{C}$ is just a ([[cartesian logic|cartesian]], [[regular logic|regular]], [[coherent logic|coherent]], [[first-order logic|first-order]], [[geometric logic|geometric]]) functor to $\mathbf{C}$. When $\mathbf{C}$ is [[Set]], $T$ is first-order, and the functor (say $M$) is \emph{logical} (in the sense of Makkai-Reyes, equivalently coherent if we take the [[Morleyization]] of $T$), we get \emph{models} in the sense usually studied in [[model theory]]. \hypertarget{interpretations_of_theories_in_each_other}{}\subsection*{{Interpretations of theories in each other}}\label{interpretations_of_theories_in_each_other} Let $T_1$ and $T_2$ be ([[cartesian logic|cartesian]], [[regular logic|regular]], [[coherent logic|coherent]], [[first-order logic|first-order]], [[geometric logic|geometric]]) theories. A ([[cartesian logic|cartesian]], [[regular logic|regular]], [[coherent logic|coherent]], [[first-order logic|first-order]], [[geometric logic|geometric]]) \emph{interpretation} $T_1 \to T_2$ is just a functor between the [[syntactic categories]] $\mathbf{Def}(T_1) \to \mathbf{Def}(T_2)$. Elsewhere, interpretations have been defined as assignments of symbols in the language $\mathcal{L}_1$ of $T_1$ to definable sets of $T_2$ satisfying various coherence conditions (usually at least product-preserving) which amount to functoriality. Note that via the duality between taking [[syntactic category|syntactic categories]] and [[internal logic|internal logics]], a model of $T$ in $\mathbf{Set}$ is just an interpretation of $T$ in the theory $\mathsf{Lang}(\mathbf{Set})$. \hypertarget{biinterpretations_of_theories}{}\subsubsection*{{Bi-interpretations of theories}}\label{biinterpretations_of_theories} We say that $T_1$ and $T_2$ are \emph{bi-interpretable} if there are functors (of appropriate logical strength) $\mathbf{Def}(T_1) \leftrightarrows \mathbf{Def}(T_2)$ forming an [[equivalence of categories]]. One direction of [[conceptual completeness]] is that bi-interpretable theories have equivalent categories of models. This follows from the fact that ([[cartesian logic|cartesian]], [[regular logic|regular]], [[coherent logic|coherent]], [[first-order logic|first-order]], [[geometric logic|geometric]]) functors are closed under composition, and that equivalent categories induce equivalences of functor categories. Many notions from [[geometric stability theory]] and [[classification theory]] are invariant under bi-interpretability, e.g. [[stability in model theory|stability]], [[quantifier elimination]], [[elimination of imaginaries]], etc. Since bi-interpretations induce equivalences of categories of models, monsters of bi-interpretable first-order theories $T_1, T_2$ will have isomorphic automorphism groups, with the isomorphism induced by restrictions along reducts. This indicates the bi-interpretation extends to the [[imaginaries]] of $T_1$ and $T_2$ also, so that $T_1^{\operatorname{eq}} \simeq T_2^{\operatorname{eq}}$, in fact uniquely---which is the universal property of the [[pretopos completion]]. \hypertarget{interpretations_of_models_in_each_other}{}\subsection*{{Interpretations of models in each other}}\label{interpretations_of_models_in_each_other} This notion has appeared in the model-theoretic literature, and is what some model theorists mean when they say ``interpretation.'' Specialize to first-order logic and models in [[Set]], and fix models $M_1 \models T_1, M_2 \models T_2$. An \emph{interpretation} of $M_1$ in $M_2$ is a surjection $U \overset{f}{\twoheadrightarrow} M_1$ for $U$ some subset of $M_2^k$, some $k \in \mathbb{N}$, such that the pullback of $f^*X$ of any definable (with parameters) set $X$ of $M_1$ along $f$ is again definable in $Y$. This is enough to induce a logical functor $\mathbf{Def}(T_1) \to \mathbf{Def}(T_2)$ (surjectivity implies witnessed existentials continue to be witnessed, and the functor being induced by pullback implies logicalness), in fact a logical functor $\mathbf{Def}(T_1(M_1)) \to \mathbf{Def}(T_2(M_2))$ of $T_1$ and $T_2$ enriched with the elementary diagrams of $M_1$ and $M_2$. Facts: \begin{itemize}% \item Every interpretation between theories can be realized as being induced by a concrete interpretation between sufficiently saturated models of those theories. \item Given an $f : U \twoheadrightarrow M_1$, any other $g : U \twoheadrightarrow M_1$ which is also an interpretation $M_1 \to M_2$ is of the form $\sigma \circ f$ for some $\sigma \in \operatorname{Aut}(M_1)$. \end{itemize} \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \begin{itemize}% \item The construction of the [[Grothendieck group of a commutative monoid]] implements a canonical interpretation of the ring $\mathbb{Z}$ in the semiring $\mathbb{N}$ (in fact inside $\mathbb{N}$ viewed as the standard model of [[Peano arithmetic]]). \item The complex field $\mathbb{C}$ is canonically interpreted in the real field $\mathbb{R}$ by identifying $\mathbb{C}$ with $\mathbb{R}^2$ and noting that the multiplication of complex numbers is definable from multiplication on the reals. \end{itemize} \hypertarget{classifying_topses}{}\subsection*{{Classifying topses}}\label{classifying_topses} An interpretation $T \to T'$ is precisely the inverse image part of a [[geometric morphism]] of [[classifying topos|classifying toposes]] $\mathcal{E}(T') \to \mathcal{E}(T)$. In particular, [[structure in model theory|models]] of $T$ are [[points of a topos | points]] of [[Set]] in $\mathcal{E}(T)$. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[formula]] \item [[model theory]], [[structure (model theory)]] \item [[geometric morphism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item wikipedia \href{http://en.wikipedia.org/wiki/Interpretation_%28model_theory%29}{interpretation (model theory)} \item Wilfrid Hodges, \emph{A shorter model theory}, Cambridge Univ. Press 1997 \item Olivia Caramello, \emph{Topos-theoretic preliminaries}. \end{itemize} \end{document}