\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{interval} \begin{quote}% This entry is about the notion in [[order theory]]. For the related concept in [[topology]] see at \emph{[[topological interval]]}, and for concept in [[homotopy theory]] see at \emph{[[interval object]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{in_posets}{In posets}\dotfill \pageref*{in_posets} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{intervals_in_the_real_line}{Intervals in the real line}\dotfill \pageref*{intervals_in_the_real_line} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{classifying_topos}{Classifying topos}\dotfill \pageref*{classifying_topos} \linebreak \noindent\hyperlink{RelationToSimplices}{Relation to simplices}\dotfill \pageref*{RelationToSimplices} \linebreak \noindent\hyperlink{intervals_as_generators_of_the_incidence_algebra}{Intervals as generators of the incidence algebra}\dotfill \pageref*{intervals_as_generators_of_the_incidence_algebra} \linebreak \noindent\hyperlink{in_homotopy_theory}{In homotopy theory}\dotfill \pageref*{in_homotopy_theory} \linebreak \noindent\hyperlink{in_geometry}{In geometry}\dotfill \pageref*{in_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{in_posets}{}\subsection*{{In posets}}\label{in_posets} \hypertarget{idea}{}\subsubsection*{{Idea}}\label{idea} In the general context of [[posets]], an \emph{interval} is an [[under category]], [[over category]], or under-over category. They are closed under betweenness: if two points belong to an interval and a third point is between them, then that third point also belongs to the interval. \hypertarget{definitions}{}\subsubsection*{{Definitions}}\label{definitions} Given a [[poset]] $P$ and an element $x$ of $P$, the \textbf{upwards unbounded interval} $[x,\infty[$ (also $[x,\infty)$, $[x,\infty[_P$, etc) is the [[subset]] \begin{displaymath} {[x, \infty[} = \{ y : P \;|\; x \leq y \} ; \end{displaymath} the \textbf{downwards unbounded interval} $]{-\infty}, x]$ (also $(-\infty,x]$, $]{-\infty},x]_P$, etc) is the subset \begin{displaymath} ]{-\infty}, x] = \{ y : P \;|\; y \leq x \} ; \end{displaymath} and given an element $y$ of $P$, the \textbf{bounded interval} $[x,y]$ (also $[x,y]_P$) is the subset \begin{displaymath} [x,y] = \{ z : P \;|\; x \leq z \leq y \} . \end{displaymath} Thinking of $P$ as a [[category]] and subsets of $P$ as [[full subcategory|subcategories]], $[x,\infty[$ is the [[coslice category]] $(x/P)$, $]{-\infty},x]$ is the [[slice category]] $(P/x)$, and $[x,y]$ is the bislice category $(y/P/x)$. An interval with distinct [[top]] and [[bottom]] element in a [[total order]] is also called a \textbf{linear interval}. (Sometimes this is called a \textbf{strict linear interval} and just ``linear interval'' then refers to the situation where top and bottom may coincide.) Besides the \textbf{closed intervals} above, we also have the \textbf{open intervals} \begin{itemize}% \item ${]x, \infty[} = {[x,\infty[} \setminus \{x\} = \{ y : P \;|\; x \lt y \} ,$ \item ${]{-\infty}, x[} = {]{-\infty}, x]} \setminus \{x\} = \{ y : P \;|\; y \lt x \} ,$ \item ${]x, y[} = [x, y] \setminus \{x, y\} = \{ z : P \;|\; x \lt z \lt y \} ,$ \end{itemize} as well as the \textbf{half-open intervals} \begin{itemize}% \item ${[x,y[} = [x,y] \setminus \{y\} = \{ z : P \;|\; x \leq z \lt y \} ,$ \item $]x,y] = [x,y] \setminus \{x\} = \{ z : P \;|\; x \lt z \leq y \} .$ \end{itemize} These are important in analysis, and more generally whenever the [[quasiorder]] $\lt$ is at least as important as the [[partial order]] $\leq$. The entire poset $P$ is also considered an \textbf{unbounded interval} in itself. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \hypertarget{intervals_in_the_real_line}{}\paragraph*{{Intervals in the real line}}\label{intervals_in_the_real_line} Intervals of [[real numbers]] are important in [[analysis]] and [[topology]]. They may be succinctly characterized as the [[connected space|connected]] [[subspaces]] of the real line. The bounded closed intervals in the real line are the original [[compact spaces]]. The interval in the reals has a [[universal property|universal]] characterization: it \href{http://ncatlab.org/nlab/show/terminal+coalgebra+of+an+endofunctor#UnitInterval}{is the terminal coalgebra} of the [[endofunctor]] on the category of all intervales that glues an interval end-to-end to itself. The \textbf{unit interval} $[0,1]$ is primary in [[homotopy theory]]; specifically in [[topological homotopy theory]] a \textbf{[[left homotopy]]} from a [[continuous function]] $f$ to a continuous function $g$ is a continuous function $h \colon A \times I \to B$ out of the [[product topological space]] with the [[topological interval]] $I = [0,1]$ such that $h(x,0) = f(x)$ and $h(x,1) = g(x)$. More generally this is the concept of left homotopy for an [[interval object]] in a suitable ([[model category|model]]) [[category]]. The usual [[integral]] in ordinary calculus is done over an interval in the real line, a compact interval for a `proper' integral, or any interval for an `improper' integral. The theory of [[Lebesgue measure]] removes this restriction and allows integrals over any [[measurable subset]] of the real line. Still, the Lebesgue measure on intervals (even compact intervals) generates all of the rest. To integrate a $1$-[[differential form|form]] on the real line requires orienting an interval; the standard orientation is from $x$ to $y$ in $[x,y]$. If $x \gt y$, then $[x,y]$ (which by the definition above would be [[empty set|empty]]) may also be interpreted as $[y,x]$ with the reverse orientation. This also matches the traditional notation for the integral. \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \hypertarget{classifying_topos}{}\paragraph*{{Classifying topos}}\label{classifying_topos} The [[classifying topos]] for linear intervals is the category [[sSet]] of [[simplicial sets]]. See the section \emph{\href{http://ncatlab.org/nlab/show/classifying+topos#ForIntervals}{For intervals}} at \emph{[[classifying topos]]}. \hypertarget{RelationToSimplices}{}\paragraph*{{Relation to simplices}}\label{RelationToSimplices} Let $\mathbb{I}$ be the category of \emph{finite} linear intervals. There is an [[equivalence of categories]] \begin{displaymath} \widehat{(-)} : \Delta^{op} \stackrel{\simeq}{\to} \mathbb{I} \end{displaymath} from the [[opposite category]] of the [[simplex category]] to $\mathbb{I}$. Here \begin{displaymath} \widehat{[n]} \coloneqq Hom_{\Delta}([n],[1]) \simeq [n+1] \end{displaymath} and the inverse is \begin{displaymath} [n] \mapsto Hom_{\mathbb{I}}([n],[1]) \,. \end{displaymath} See also at \emph{\href{simplex+category#DualityWithIntervals}{Simplex category -- Duality with intervals}}. \hypertarget{intervals_as_generators_of_the_incidence_algebra}{}\paragraph*{{Intervals as generators of the incidence algebra}}\label{intervals_as_generators_of_the_incidence_algebra} Recall that the [[incidence algebra]] $I(P)$ of a poset $P$ (relative to some commutative ring $R$) is an [[associative unital algebra]] containing all functions $f : P \times P \to R$ such that $x \nleq y$ implies $f(x,y) = 0$. For any pair of elements related by the order $x \leq y$, we can define an element $\epsilon_{x,y}$ of the incidence algebra by: \begin{displaymath} \epsilon_{x,y}(u,v) = \begin{cases}1 & u = x, w = y \\ 0 & \text{otherwise}\end{cases} \end{displaymath} and the collection of such functions $\epsilon_{x,y}$ form a [[basis]] of $I(P)$ as an $R$-[[module]]. So, the [[dimension]] of the incidence algebra $I(P)$ is equal to the total number of (non-empty) intervals in $P$. Information about the number of intervals in a finite poset is also encoded in its [[zeta polynomial]]. \hypertarget{in_homotopy_theory}{}\subsection*{{In homotopy theory}}\label{in_homotopy_theory} In [[homotopy theory]], ``cellular'' models for the intervals play a central role. See [[interval object]]. \hypertarget{in_geometry}{}\subsection*{{In geometry}}\label{in_geometry} The [[geometry]] (for instance [[differential geometry]]) of intervals, for instance in the [[real line]], are often relevant. See for instance \href{http://ncatlab.org/nlab/show/cohesive+homotopy+type+theory#GeometricSpacesAndTheirHomotopyTypes}{Geometric spaces and their homotopy types} at [[cohesive homotopy type theory]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[interval type]], [[interval object]] \item [[abstract circle]] \item [[twisted arrow category]] \item [[t-norm]] \end{itemize} [[!redirects interval]] [[!redirects intervals]] [[!redirects unit interval]] [[!redirects under-over category]] [[!redirects linear interval]] [[!redirects linear intervals]] [[!redirects open interval]] [[!redirects open intervals]] [[!redirects closed interval]] [[!redirects closed intervals]] [[!redirects half-open interval]] [[!redirects half-open intervals]] \end{document}