\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{invariant} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{ViaSectionsOfActionGroupoidProjections}{Via sections of action groupoid projections}\dotfill \pageref*{ViaSectionsOfActionGroupoidProjections} \linebreak \noindent\hyperlink{ForInfinityGroupActions}{Invariants of $\infty$-group actions}\dotfill \pageref*{ForInfinityGroupActions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $A$ a [[monoid]] equipped with an [[action]] on an object $V$, an \textbf{invariant} of the action is an [[generalized element|element]] of $V$ which is taken by the action to itself, hence a [[fixed point]] for all the operations in the monoid. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A robust definition of invariants that generalizes to [[homotopy theory]] is via the expression of actions as [[action groupoids]] regarded as sitting over [[delooping]] [[groupoids]], as discussed at \emph{[[infinity-action]]} and at \emph{[[geometry of physics -- representations and associated bundles]]}. We describe how the ordinary concept of invariants is recovered from this perspective and then consdider its immediate generalizations to [[(infinity,1)-topos theory]] and its formalization in [[homotopy type theory]]. \hypertarget{ViaSectionsOfActionGroupoidProjections}{}\subsubsection*{{Via sections of action groupoid projections}}\label{ViaSectionsOfActionGroupoidProjections} \begin{prop} \label{}\hypertarget{}{} For $G$ a [[discrete group]], $\rho$ a $G$-[[action]] on some set $S$, then the set of [[invariants]] of that action is equivalent to the groupoid of [[sections]] of the [[action groupoid]] projection of \href{geometry+of+physics+--+representations+and+associated+bundles#MapFromActionGroupoidOnSetBackToBG}{this proposition}, corresponding to the action via \href{geometry+of+physics+--+representations+and+associated+bundles#EquivalenceOfPermutationRepresentationsWithActionGroupodsInSlice}{this proposition}. \end{prop} \begin{proof} The sections in question are diagrams in [[Grpd]] of the form \begin{displaymath} \itexarray{ \mathbf{B}G && \stackrel{\sigma}{\longrightarrow} && S//G \\ & {}_{\mathllap{id}}\searrow &\swArrow_{\mathrlap{\simeq}}& \swarrow_{\mathrlap{p_\phi}} \\ && \mathbf{B}G } \,, \end{displaymath} hence the groupoid which they form is equivalently the [[hom-groupoid]] \begin{displaymath} Grpd_{/\mathbf{B}G}(id_{\mathbf{B}G}, p_\rho) \in Grpd \end{displaymath} in the [[slice (infinity,1)-category|slice]] of [[Grpd]] over $\mathbf{B}G$. As in the proof of \href{geometry+of+physics+--+representations+and+associated+bundles#IntertwinersOfPermutationActionAsSliceHoms}{this proposition}, with the fibrant presentation $(p_\rho)_\bullet$ of \href{geometry+of+physics+--+representations+and+associated+bundles#MapFromActionGroupoidOnSetBackToBG}{this proposition}, this is equivalently given by strictly commuting diagrams of the form \begin{displaymath} \itexarray{ (\mathbf{B}G)_\bullet && \stackrel{\sigma_\bullet}{\longrightarrow} && (S//G)_\bullet \\ & {}_{\mathllap{id_\bullet}}\searrow &=& \swarrow_{\mathrlap{(p_\phi)_\bullet}} \\ && (\mathbf{B}G)_\bullet } \,. \end{displaymath} These $\sigma$ now are manifestly functors that are the identiy on the group labels of the morphisms \begin{displaymath} \sigma_\bullet \;\colon\; \left( \itexarray{ \ast \\ \downarrow^{\mathrlap{g}} \\ \ast } \right) \;\; \mapsto \;\; \left( \itexarray{ \sigma(\ast) \\ \downarrow^{\mathrlap{g}} \\ \sigma(\ast) & = \rho(\sigma(\ast)(g)) } \right) \,. \end{displaymath} This shows that they pick precisely those elements $\sigma(\ast) \in S$ which are fixed by the $G$-action $\rho$. Moreover, since these functors are identity on the group labels, there are no non-trivial [[natural isomorphisms]] between them, and hence the groupoid of sections is indeed a set, the set of invariant elements. \end{proof} More generally, we may consider sections of these groupoid projections after pulling them back along some cocycle: \begin{prop} \label{}\hypertarget{}{} Given an [[associated bundle]] $P \times_G V\to X$ [[modulating morphism|modulated]], as in \href{geometry+of+physics+--+representations+and+associated+bundles#Associated1BundleAsPullbackOfActionGroupoid}{this proposition}, by a morphism of [[smooth groupoids]] of the form $g \colon X \longrightarrow \mathbf{B}G$, then its set of [[sections]] is equivalently the groupoid of diagrams \begin{displaymath} \itexarray{ X && \stackrel{\sigma}{\longrightarrow} && S//G \\ & {}_{\mathllap{g}}\searrow &\swArrow_{\mathrlap{\simeq}}& \swarrow_{\mathrlap{p_\phi}} \\ && \mathbf{B}G } \,, \end{displaymath} hence the groupoid of sections is the slice [[hom-groupoid]] \begin{displaymath} \Gamma_X(P\times_G V) \simeq Grpd_{/\mathbf{B}G}(g, p_\rho) \,. \end{displaymath} \end{prop} \begin{proof} By the defining [[universal property]] of the [[homotopy pullback]] in \href{geometry+of+physics+--+representations+and+associated+bundles#Associated1BundleAsPullbackOfActionGroupoid}{this proposition}. \end{proof} \begin{remark} \label{}\hypertarget{}{} Taken together this means that [[invariants]] of group actions are equivalently the sections of the corresponding [[universal principal bundle|universal]] [[associated bundle]]. \end{remark} \hypertarget{ForInfinityGroupActions}{}\subsubsection*{{Invariants of $\infty$-group actions}}\label{ForInfinityGroupActions} For $\mathbf{H}$ an [[(∞,1)-topos]], $G \in Grp(\mathbf{H})$ an [[∞-group]] and \begin{displaymath} * : \mathbf{B} G \vdash : V(*) : Type \end{displaymath} an [[∞-action]] of $G$ on $V \in \mathbf{H}$, the type of invariants is the absolute [[dependent product]] \begin{displaymath} \vdash \prod_{* : \mathbf{B}G} V(*) : Type \,. \end{displaymath} The connected components of this is equivalently the [[group cohomology]] of $G$ with [[coefficients]] in the [[infinity-module]] $V$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{TakingInvariantsForFiniteGroupCommutesWithTaingHomologyInCharZero}\hypertarget{TakingInvariantsForFiniteGroupCommutesWithTaingHomologyInCharZero}{} \textbf{(in [[characteristic zero]], [[invariants]] for [[finite group]] are compatible with [[chain homology]])} Let $(V_\bullet, \partial)$ be a [[chain complex]] over a [[ground field]] of [[characteristic zero]], equipped with an [[action]] by a [[finite group]] $G$. Then taking $G$-invariants commutes with passing to [[chain homology]]: \begin{displaymath} H_\bullet((V_\bullet,\partial)^G) \;\simeq\; H_\bullet((V_\bullet,\partial))^G \,. \end{displaymath} \end{prop} \begin{proof} Since the [[ground field]] has [[characteristic zero]], [[group averaging]] exists and provides a [[linear map]] \begin{displaymath} \itexarray{ V_\bullet & \overset{p}{\longrightarrow} & V_\bullet^G \\ x &\mapsto& \frac{1}{{\vert G \vert}} \underset{g \in G}{\sum} g(x) } \end{displaymath} onto the $G$-invariants. Now for a [[chain homology]]-class $[x] \in H_\bullet((V_\bullet,\partial))$ being $G$-invariant means that $g[x] \coloneqq [g(x)] = [x]$ for all $g \in G$, which implies that $[x] = [p(x)]$. This means that each invariant homology class has an invariant representative, hence that the map from invariant [[cycles]] to invariant [[chain homology]]-classes \begin{displaymath} Z((V_\bullet^G,\partial)) \longrightarrow H_\bullet((V_\bullet,\partial)) \end{displaymath} is an [[epimorphism]]. Next consider the [[kernel]] of this map, which a priori is $Z((V_\bullet^G,\partial)) \cap B((V_\bullet,\partial))$. It is now sufficient to show that this coincides with the space of $G$-invariant [[boundaries]]: \begin{displaymath} Z((V_\bullet^G,\partial)) \cap B((V_\bullet,\partial)) \;\simeq\; B((V_\bullet^G, \partial)) \,. \end{displaymath} It is clear that there is an [[injective map|inclusion]] \begin{displaymath} B((V_\bullet^G, \partial)) \hookrightarrow Z((V_\bullet^G,\partial)) \cap B((V_\bullet,\partial)) \end{displaymath} so it only remains to see that this is also a [[surjection]]. To that end, consider any \begin{displaymath} x \in Z((V_\bullet^G,\partial)) \cap B((V_\bullet,\partial)) \,. \end{displaymath} Since in particular $x \in B((V_\bullet,\partial))$, there is $y \in V_\bullet$ with $x = \partial y$; and since moreover $x \in V_\bullet(G)$, the above implies that \begin{displaymath} x = p(x) = p(\partial y) = \partial(p y) \end{displaymath} and hence that \begin{displaymath} x \in B((V_\bullet^G,\partial)) \,. \end{displaymath} \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group averaging]], [[norm map]] \item [[stabilizer subgroup]] \item [[invariant theory]], [[invariant polynomial]] \item [[gauge invariance]] \item [[topological invariant]]/[[homeomorphism invariant]] \item [[homotopy invariant]] \end{itemize} [[!include homotopy type representation theory -- table]] [[!redirects invariants]] \end{document}