\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{invariant polynomial} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{OnLieAlgebras}{On Lie algebras}\dotfill \pageref*{OnLieAlgebras} \linebreak \noindent\hyperlink{SemisimpLie}{On semisimple Lie algebras}\dotfill \pageref*{SemisimpLie} \linebreak \noindent\hyperlink{on_tangent_lie_algebroids}{On tangent Lie algebroids}\dotfill \pageref*{on_tangent_lie_algebroids} \linebreak \noindent\hyperlink{OnStringLie2Algebra}{On the string Lie 2-algebra}\dotfill \pageref*{OnStringLie2Algebra} \linebreak \noindent\hyperlink{on_symplectic_lie_algebroids}{On symplectic Lie $n$-algebroids}\dotfill \pageref*{on_symplectic_lie_algebroids} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{AsFormsOnBGconn}{As differential forms on the moduli stack of connections}\dotfill \pageref*{AsFormsOnBGconn} \linebreak \noindent\hyperlink{OnReductiveLieAlg}{On reductive Lie algebras}\dotfill \pageref*{OnReductiveLieAlg} \linebreak \noindent\hyperlink{role_in_chernweil_theory}{Role in $\infty$-Chern-Weil theory}\dotfill \pageref*{role_in_chernweil_theory} \linebreak \noindent\hyperlink{TransgressionCocycles}{Transgression cocycles and Chern-Simons elements}\dotfill \pageref*{TransgressionCocycles} \linebreak \noindent\hyperlink{chernsimons_and_curvature_characteristic_forms}{Chern-Simons and curvature characteristic forms}\dotfill \pageref*{chernsimons_and_curvature_characteristic_forms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For every [[Lie algebra]] or [[∞-Lie algebra]] or [[∞-Lie algebroid]] $\mathfrak{a}$ there is its [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{a})$ and its [[Weil algebra]] $W(\mathfrak{a})$ and a canonical [[dg-algebra]] morphism \begin{displaymath} CE(\mathfrak{a}) \leftarrow W(\mathfrak{a}) \,. \end{displaymath} Recall that a [[∞-Lie algebra cohomology|cocycle]] on $\mathfrak{a}$ is a closed element in $CE(\mathfrak{a})$. An invariant polynomial is a closed elements in $W(\mathfrak{a})$ that sits in the shifted copy $\wedge^\bullet (\mathfrak{a}^*[1])$. This means that for $X \in \mathfrak{a}$, for $\iota_X : W(\mathfrak{a}) \to W(\mathfrak{a})$ the contraction derivation and $ad_X := [d_W, \iota_X]$ the corresponding [[Lie derivative]], we have in particular that an invariant polynomial $\langle -\rangle \in W(\mathfrak{a})$ is invariant in the sense that \begin{displaymath} ad_X \langle -\rangle = 0 \,. \end{displaymath} For $\mathfrak{a} = \mathfrak{g}$ an ordinary [[Lie algebra]], an invariant polynomial on $\mathfrak{g}$ is precisely a symmetric multilinear map on $\mathfrak{g}$ which is $ad$-invariant in the ordinary sense. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For $\mathfrak{a}$ an [[∞-Lie algebroid]] (of finite type, i.e. degreewise of finite rank) with [[Chevalley-Eilenberg algebra]] \begin{displaymath} CE(\mathfrak{g}) = (\wedge^\bullet \mathfrak{a}^*, d_{CE(\mathfrak{a}})) \end{displaymath} and [[Weil algebra]] \begin{displaymath} W(\mathfrak{a}) = (\wedge^\bullet (\mathfrak{a}^* \oplus \mathfrak{a}^*[1]), d_{W(\mathfrak{a})}) \end{displaymath} an \textbf{invariant polynomial} on $\mathfrak{a}$ is an elements $\langle - \rangle \in W(\mathfrak{a})$ with the property that \begin{itemize}% \item $\langle - \rangle$ is a wedge product of generators in the shifted copy of $\mathfrak{a}^*$ $W(\mathfrak{a})$, i.e. \begin{displaymath} \langle - \rangle \in \wedge^\bullet \mathfrak{a}^*[1] \end{displaymath} or equivalently: for all $x \in \mathfrak{a}$ and $\iota_X : W(\mathfrak{a}) \to W(\mathfrak{a})$ the contraction [[derivation]], we have \begin{displaymath} \iota_x \langle -\rangle = 0 \,; \end{displaymath} \item it is closed in $W(\mathfrak{a})$ in that $d_{W(\mathfrak{a})} \langle - \rangle = 0$ or more generally its differential is again in the shifted copy. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} This implies that for \begin{displaymath} ad_x := [d_{W(\mathfrak{a})}, \iota_X] \end{displaymath} the [[Lie derivative]] in $W(\mathfrak{a})$ along $x \in \mathfrak{a}$, which encodes the coadjoint action of $\mathfrak{a}$ on $W(\mathfrak{a})$, we have \begin{displaymath} ad_x \langle - \rangle = 0 \end{displaymath} for all $x$. But the condition for an invariant polynomial is stronger than these ad-invariances. For instance there are [[∞-Lie algebra cohomology|∞-Lie algebra cocycles]] $\mu \in CE(\mathfrak{g})$ which when regarded as elements in $W(\mathfrak{g})$ are ad-invariant. But being entirely in the un-shifted copy, $\mu \in \wedge^\bullet \mathfrak{g}^*$, these are not invariant polynomials. \end{remark} \begin{defn} \label{DecomposableInvPolynomial}\hypertarget{DecomposableInvPolynomial}{} We say an invariant polynomial is \emph{decomposable} if it is the wedge product in $W(\mathfrak{g})$ of two invariant polynomials of non-vanishing degree. \end{defn} \begin{defn} \label{HorizontalEquivalence}\hypertarget{HorizontalEquivalence}{} Two invariant polynomials $P_1, P_2 \in W(\mathfrak{g})$ are \emph{horizontally equivalent} if there is $\omega \in ker(W(\mathfrak{g}) \to CE(\mathfrak{g}))$ such that \begin{displaymath} P_1 = P_2 + d_W \omega \,. \end{displaymath} \end{defn} \begin{prop} \label{DecomposablePolysAreHorizontallyTrivial}\hypertarget{DecomposablePolysAreHorizontallyTrivial}{} Every decomposable invariant polynomial, def. \ref{DecomposableInvPolynomial}, is horizontally equivalent to 0. \end{prop} \begin{proof} Let $P = P_1 \wedge P_2$ be a wedge product of two indecomposable polynomials. Then there exists a [[Chern-Simons element]] $cs_1 \in W(\mathfrak{g})$ such that $d_W cs_1 = P_1$. By the assumption that $P_2$ is in non-vanishing degree and hence in $ker(W(\mathfrak{g}) \to CE(\mathfrak{g}))$ it follows that \begin{enumerate}% \item also $cs_1 \wedge P_2$ is in $ker(W(\mathfrak{g}) \to CE(\mathfrak{g}))$ \item $d_W (cs_1 \wedge P_2) = P_1 \wedge P_2$ . \end{enumerate} Therefore $cs_1 \wedge P_1$ exhibits a horizontal equivalence $P_1 \wedge P_2 \sim 0$. \end{proof} \begin{prop} \label{ClassesOfInvPolysFormGradedVectorSpace}\hypertarget{ClassesOfInvPolysFormGradedVectorSpace}{} Horizontal equivalence classes of invariant polynomials on $\mathfrak{g}$ form a [[graded vector space]] $inv(\mathfrak{g})_V$. There is a morphism of graded vector spaces \begin{displaymath} inv(\mathfrak{g})_V \hookrightarrow W(\mathfrak{g}) \end{displaymath} unique up to horizontal equivalence, that sends each horizontal equivalence class to a representative. \end{prop} \begin{remark} \label{}\hypertarget{}{} By prop. \ref{DecomposablePolysAreHorizontallyTrivial} it follows that $inv(\mathfrak{g})_V$ contains only indecomposable invariant polynomials. \end{remark} \begin{defn} \label{}\hypertarget{}{} We write $inv(\mathfrak{g})$ for the [[dg-algebra]] whose underlying [[graded algebra]] is the [[free construction|free]] graded algebra on the [[graded vector space]] $inv(\mathfrak{g})_V$, and whose [[differential]] is trivial. Since invariant polynomials are closed, the inclusion of graded vector spaces from observation \ref{ClassesOfInvPolysFormGradedVectorSpace} induces an inclusion ([[monomorphism]]) of dg-algebras \begin{displaymath} inv(g) \hookrightarrow W(g) \,. \end{displaymath} \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{OnLieAlgebras}{}\subsubsection*{{On Lie algebras}}\label{OnLieAlgebras} \begin{lemma} \label{}\hypertarget{}{} For $\mathfrak{g}$ a [[Lie algebra]], this definition of invariant polynomials is equivalent to more traditional ones. \end{lemma} \begin{proof} To see this explicitly, let $\{t^a\}$ be a basis of $\mathfrak{g}^*$ and $\{r^a\}$ the corresponding basis of $\mathfrak{g}^*[1]$. Write $\{C^a{}_{b c}\}$ for the structure constants of the Lie bracket in this basis. Then for $P = P_{(a_1 , \cdots , a_k)} r^{a_1} \wedge \cdots \wedge r^{a_k} \in \wedge^{r} \mathfrak{g}^*[1]$ an element in the shifted generators, the condition that it is $d_{W(\mathfrak{g})}$-closed is equivalent to \begin{displaymath} C^{b}_{c (a_1} P_{b, \cdots, a_k)} t^c \wedge r^{a_1} \wedge \cdots \wedge r^{a_k} \,, \end{displaymath} where the parentheses around indices denotes symmetrization, as usual, so that this is equivalent to \begin{displaymath} \sum_{i} C^{b}_{c (a_i} P_{a_1 \cdots a_{i-1} b a_{i+1} \cdots, a_k)} = 0 \end{displaymath} for all choice of indices. This is the component-version of the familiar invariance statement \begin{displaymath} \sum_i P(t_1, \cdots, t_{i-1}, [t_c, t_i], t_{i+1}, \cdots , t_k) = 0 \end{displaymath} for all $t_\bullet \in \mathfrak{g}$. \end{proof} \hypertarget{SemisimpLie}{}\subsubsection*{{On semisimple Lie algebras}}\label{SemisimpLie} See [[Killing form]], [[string Lie 2-algebra]]. \hypertarget{on_tangent_lie_algebroids}{}\subsubsection*{{On tangent Lie algebroids}}\label{on_tangent_lie_algebroids} For $X$ a [[smooth manifold]], and invariant polynomial on the [[tangent Lie algebroid]] $\mathfrak{a} = T X$ is precisely a closed [[differential form]] on $X$. \hypertarget{OnStringLie2Algebra}{}\subsubsection*{{On the string Lie 2-algebra}}\label{OnStringLie2Algebra} For $\mathfrak{g}$ a [[semisimple Lie algebra]] let $\mu_3 := \langle -,[-,-]\rangle$ be the canonical [[Lie algebra cocycle]] in degree 3, which is the one in [[transgression]] with the [[Killing form]] invariant polynomial $\langle -,-\rangle$. Write $\mathfrak{g}_{\mu_3}$ for the corresponding [[string Lie 2-algebra]]. We have that the [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{g}_{\mu_3})$ is given by \begin{displaymath} d_{CE} t^a = - \frac{1}{2}C^a{}_{b c} t^b \wedge t^c \end{displaymath} \begin{displaymath} d_{CE} b = \mu_3 \end{displaymath} and the [[Weil algebra]] $W(\mathfrak{g}_{\mu_3})$ is given by \begin{displaymath} d_W t^a = - \frac{1}{2}C^a{}_{b c} t^b \wedge t^c + r^a \end{displaymath} \begin{displaymath} d_W b = \mu_3 - h \end{displaymath} \begin{displaymath} d_W r^a = - C^a_{b c} t^b \wedge r^c \end{displaymath} \begin{displaymath} d_W h = d_W \mu_3 = \sigma \mu_3 \,, \end{displaymath} where $\sigma$ acts by degree shift isomorphism on unshifted generators. It follows at once that every invariant polynomial \begin{displaymath} P = P_{a_1, \cdots, a_n} r^{a_1} \wedge \cdots \wedge r^{a_n} \end{displaymath} on the Lie algebra $\mathfrak{g}$ canonically identifies also with an invariant polynomial of the string Lie 2-algebra. But the differnce is that the [[Killing form]] $\langle -,- \rangle := P_{a b} r^a \wedge r^b$ is non-trivial as a polynomial on $\mathfrak{g}$, but as a polynomial on $\mathfrak{g}_{\mu_3}$ becomes horizontally equivalent ,def. \ref{HorizontalEquivalence}), to the trivial invariant polynomial. \begin{prop} \label{}\hypertarget{}{} On the [[string Lie 2-algebra]] $\mathfrak{g}_{\mu_3}$ the [[Killing form]] $\langle -,-\rangle$ is horizontally equivalent to 0. \end{prop} \begin{proof} Let $cs_3 \in W(\mathfrak{g})$ be any [[Chern-Simons element]] for $\langle -,- \rangle$, hence an element such that \begin{enumerate}% \item $cs_3|_{CE(\mathfrak{g})} = \mu_3$; \item $d_W cs_3 = \langle -,- \rangle$. \end{enumerate} Then notice that by the above we have in $W(\mathfrak{g}_{\mu_3})$ that the differential of the new generator $h$ is equal to that of $\mu_3$: \begin{displaymath} d_W h = d_W \mu_3 \,. \end{displaymath} We on $\mathfrak{g}_{\mu_4}$ we can replace $\mu_3$ by $h$ and still get a [[Chern-Simons element]] for the Killing form: \begin{displaymath} \tilde cs_3 := cs_3 - \mu_3 + h \,. \end{displaymath} \begin{displaymath} d_W \tilde cs_3 = \langle -,- \rangle \,. \end{displaymath} But while $\mu_3$ is not in $ker(W(\mathfrak{g}_{\mu_3}) \to CE(\mathfrak{g}_{\mu_3}))$, the element $h$ is, by definition. Therefore $\tilde cs_3$ is in that kernel, and hence exhibits a horizontal equivalence between $\langle -,- \rangle$ and $0$. \end{proof} This is a special case of the more general statement below, about \href{OnShiftedCentralExtenstions}{invariant polynomials on shifted central extensions}. For illustration purposes it is useful to consider the following variant of this example: \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} (b \mathbb{R} \to \mathfrak{string}) \in L_\infty Alg \end{displaymath} for the [[L-∞ algebra]] defined by the fact that its [[Chevalley-Eilenberg algebra]] is given by \begin{displaymath} d_{CE} t^a = - \frac{1}{2} C^a{}_{b c} t^b \wedge t^c \end{displaymath} \begin{displaymath} d_{CE} b = \mu_3 - c \end{displaymath} \begin{displaymath} d_{CE} c = 0 \,, \end{displaymath} where $\{t^a\}$ is a dual basis in degree 1 for some [[semisimple Lie algebra]] $\mathfrak{g}$ as above, $b$ and $c$ are generators in degree 2 and 3, respectively, and $\mu_3 \propto \langle -,[-,-]\rangle$ is the canonical [[Lie algebra cohomology|Lie algebra cocycle]] in degree 3, as above. \end{defn} It is easily seen that \begin{prop} \label{}\hypertarget{}{} The canonical morphism \begin{displaymath} \mathfrak{g} \to (b \mathbb{R} \to \mathfrak{string}) \end{displaymath} given dually by sending \begin{displaymath} t^a \mapsto t^a\,,\,\,\, b \mapsto 0\,,\, \,\, c \mapsto \mu_3 \end{displaymath} is a weak equivalence. \end{prop} So the Lie 3-algebra $(b \mathbb{R} \to \mathfrak{string})$ is a kind of [[resolution]] of the ordinary Lie algebra $\mathfrak{g}$. It is for instance of use in the presentation of twisted [[differential string structure]]s, where the shifted piece $b \mathbb{R}$ in $(b \mathbb{R} \to \mathfrak{string})$ picks up the failure of $\mathfrak{so}$-valued [[connection on an ∞-bundle|connections]] to lift to $\mathfrak{string}$-[[connection on a 2-bundle|2-connections]]. The proof of the following proposition may be instructive for seeing how the definition of horizontal equivalence of invariant polynomials takes care of having the invariant polynomials of $(b\mathbb{R} \to \mathfrak{string})$ agree with those of $\mathfrak{g}$. \begin{prop} \label{}\hypertarget{}{} There is an [[isomorphism]] \begin{displaymath} inv(\mathfrak{g}) \simeq inv(b \mathbb{R} \to \mathfrak{string}) \,. \end{displaymath} \end{prop} \begin{proof} Notice that the [[Weil algebra]] of $(b\mathbb{R} \to \mathfrak{string})$ is given by \begin{displaymath} d_W t^a = - \frac{1}{2} C^a{}_{b c} t^b \wedge t^c + r^a \end{displaymath} \begin{displaymath} d_W b = \mu_3 - c - h \end{displaymath} \begin{displaymath} d_W c = g \end{displaymath} for new generators $\{r^a\}$ in degree 2, $h$ in degree 3 and $g$ in degree 4, coming with their [[Bianchi identities]] \begin{displaymath} d_W r^a = - C^a{}_{b c}t^b \wedge r^c \end{displaymath} \begin{displaymath} d_W h = d_W \mu_3 - g \end{displaymath} \begin{displaymath} d_W g = 0 \end{displaymath} For the following computations let $\{k_{a b}\}$ be the structure constants of the [[Killing form]], so that \begin{displaymath} \langle -,- \rangle = k_{a b} r^a \wedge r^b \end{displaymath} and assume that $\mu_3$ is normalized such that \begin{displaymath} \mu_3 = k_{a a'}C^{a'}_{b c} t^a \wedge t^b \wedge t^c \end{displaymath} (if another normalization is chosen, then the corresponding factor will float around the following formulas without changing anything of the end result). Now the indecomposable invariant polynomials are those of $\mathfrak{g}$ and one additional one: $g$. This means that before deviding out horizontal equivalence on generators, the invariant polynomials of $(b \mathbb{R} \to \mathfrak{string})$ are not equal to those of $\mathfrak{g}$, due to the superfluous generator $g$. But we do have the horizontal equivalence relation \begin{displaymath} \langle -,-\rangle = g + d_W (cs - \mu_3 + h) \,, \end{displaymath} where $cs$ is any [[Chern-Simons element]] for $\langle - , \rangle$, for instance \begin{displaymath} cs = \frac{1}{6} k_{a a'}C^{a'}_{b c} t^a \wedge t^b \wedge t^c + k_{a b} t^a r^b \,, \end{displaymath} Notice that the homotopy $cs - \mu_3 + h$ here is indeed in $ker(W(\mathfrak{g}) \to CE(\mathfrak{g}))$: the component of $cs$ not in that kernel is precisely $\mu$. The above formula subtracts this offending summand and replaces it with the new generator $h$, which by definition \emph{is} in the kernel and whose image under $d_W$ is the image of $\mu$ under $d_W$, plus the superfluous new generator of invariant polynomials. Therefore in horizontal equivalence classes of invariant polynomials on $(b \mathbb{R} \to \mathfrak{string})$ the superfluous $g$ is identified with the Killing form $\langle-,- \rangle$, and hence the claim follows. \end{proof} \hypertarget{on_symplectic_lie_algebroids}{}\subsubsection*{{On symplectic Lie $n$-algebroids}}\label{on_symplectic_lie_algebroids} A [[symplectic Lie n-algebroid]] is an [[L-infinity algebroid]] that carries a binary and non-degeneraty invariant polynomial of grade $n$. This is a generalization of the notion of [[symplectic form]] to which it reduces for $n = 0$. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{AsFormsOnBGconn}{}\subsubsection*{{As differential forms on the moduli stack of connections}}\label{AsFormsOnBGconn} The invariant polynomials of a Lie algebra $\mathfrak{g}$, thought of as equipped with trivial differential, are the de Rham complex of differential forms on the universal moduli stack $\mathbf{B}G_{conn}$ of $G$-[[principal connections]] \hyperlink{FreedHopkins13}{Freed-Hopkins 13}. \begin{displaymath} \mathrm{inv}(\mathfrak{g})\simeq \Omega^\bullet(\mathbf{B}G_{conn}) \,. \end{displaymath} For more on this see also at \emph{\href{Weil+algebra#CharacterizationInSmoothTopos}{Weil algebra -- Characterization in the smooth infinity-topos}}. \hypertarget{OnReductiveLieAlg}{}\subsubsection*{{On reductive Lie algebras}}\label{OnReductiveLieAlg} \begin{prop} \label{}\hypertarget{}{} Let $\mathfrak{g}$ be a [[reductive Lie algebra]]. Then the subalgebra of invariant polynomials in the [[Weil algebra]] is the [[free construction|free graded algebra]] on the [[graded vector space]] of indecomposable invariant polynomials. This graded vector space has a vector space [[isomorphism]] of degree -1 to the graded vector space of odd generators of the [[Lie algebra cohomology]] $H^\bullet(\mathfrak{g}) = H^\bullet(CE(\mathfrak{g}))$. \end{prop} This appears for instance as (\hyperlink{GHV}{GHV, vol III, page 242, theorem I}). \hypertarget{role_in_chernweil_theory}{}\subsection*{{Role in $\infty$-Chern-Weil theory}}\label{role_in_chernweil_theory} In ($\infty$-)[[Chern-Weil theory]] the crucial role played by the invariant polynomials is their relation to [[∞-Lie algebra cocycle]]s. One may understand invariant invariant polynomials as extending under [[Lie integration]] $\infty$-Lie algebra cocycles from [[cohomology]] to [[differential cohomology]]. \hypertarget{TransgressionCocycles}{}\subsubsection*{{Transgression cocycles and Chern-Simons elements}}\label{TransgressionCocycles} \begin{udefn} \textbf{(Chern-Simons elements and transgression cocycles)} Let $\mathfrak{a} = \mathfrak{g}$ be an [[∞-Lie algebra]]. Since the [[cochain cohomology]] of the [[Weil algebra]] $W(\mathfrak{g})$ is trivial, for every invariant polynomial $\langle -\rangle \in W(\mathfrak{g})$ there is necessarily an element $cs \in W(\mathfrak{g})$ with \begin{displaymath} d_{W(\mathfrak{g})} cs = \langle -\rangle \,. \end{displaymath} This we call a [[Chern-Simons element]] for $\langle -\rangle$. This element $cs$ will in general not sit entirely in the shifted copy. Its restriction \begin{displaymath} \mu := cs|_{\wedge^\bullet \mathfrak{g}^*} \in CE(\mathfrak{g}) \end{displaymath} is a [[∞-Lie algebra cohomology|∞-Lie algebra cocycle]]. We say this is \emph{in transgression} with $\langle -\rangle$. In total this construction yields a commuting diagram \begin{displaymath} \itexarray{ CE(\mathfrak{g}) &\stackrel{\mu}{\leftarrow}& CE(b^{n-1}\mathbb{R}) &&& cocycle \\ \uparrow && \uparrow \\ W(\mathfrak{g}) &\stackrel{(cs,\langle -\rangle)}{\leftarrow}& W(b^{n-1} \mathbb{R}) &&& Chern-Simons-element \\ \uparrow && \uparrow \\ inv(\mathfrak{g}) &\stackrel{\langle -\rangle}{\leftarrow}& CE(b^n \mathbb{R}) &&& invariant\; polynomial } \,, \end{displaymath} where $b^{n-1}\mathbb{R}$ denotes the [[∞-Lie algebra]] whose CE-algebra has a single generator in degree $n$ and vanishing differential, and where $CE(b^n \mathbb{R}) = inv(b^{n-1}\mathbb{R})$ is the algebra of invariant polynomials of $b^{n-1} \mathbb{R}$. \end{udefn} \begin{uprop} The element $\mu \in CE(\mathfrak{g})$ associated to an invariant polynomial $\langle -\rangle$ by the above procedure is indeed a cocycle, and its cohomology class is independent of the choice of the element $cs$ involved. \end{uprop} \begin{proof} The procedure that assigns $\mu$ to $\langle- \rangle$ is illustarted by the following diagram \begin{displaymath} \itexarray{ 0 && \langle-\rangle &\leftarrow & \langle-\rangle \\ \;\;\uparrow^{\mathrlap{d_{CE(\mathfrak{g})}}} && \;\;\uparrow^{\mathrlap{d_{W(\mathfrak{g})}}} \\ \mu &\leftarrow& cs \\ \\ \\ \\ CE(\mathfrak{a}) &\leftarrow& W(\mathfrak{a}) &\leftarrow& inv(\mathfrak{a}) } \end{displaymath} From the fact that all morphisms involved respect the differential and from the fact that the image of $\langle-\rangle$ in $CE(\mathfrak{g})$ vanishes it follows that \begin{itemize}% \item the element $\mu$ satisfies $d_{CE(\mathfrak{a})} \mu = 0$, hence that it is an [[∞-Lie algebra cohomology|∞-Lie algebra cocycle]]; \item any two different choices of $cs$ lead to cocylces $\mu$ that are cohomologous. \end{itemize} \end{proof} This construction exhibits effectively the preimage of the [[connecting homomorphism]] in the [[cochain cohomology]] sequence induced by $W(\mathfrak{g}) \to CE(\mathfrak{g})$: The [[dg-algebra]] of invariant polynomials is a sub-dg-algebra of the kernel of the morphism $i^* : W(\mathfrak{a}) \to CE(\mathfrak{a})$ from the [[Weil algebra]] to the [[Chevalley-Eilenberg algebra]] of $\mathfrak{a}$ \begin{displaymath} inv(\mathfrak{a}) \subset CE(\Sigma \mathfrak{a}) = ker(W(\mathfrak{a}) \to CE(\mathfrak{a})) \,. \end{displaymath} From the short [[nLab:exact sequence]] \begin{displaymath} CE(\Sigma \mathfrak{a}) \to W(\mathfrak{a}) \to CE(\mathfrak{a}) \end{displaymath} we obtain the long exact sequence in [[chain homology and cohomology|cohomology]] \begin{displaymath} \cdots \to H^{n+1}(CE(\mathfrak{a})) \stackrel{\delta}{\to} H^{n+2}(CE(\Sigma \mathfrak{a})) \to \cdots \,. \end{displaymath} We say that $\mu \in CE(\mathfrak{a})$ is in transgression with $\omega \in inv(\mathfrak{a}) \subset CE(\Sigma \mathfrak{a})$ if their classes map to each other under the [[connecting homomorphism]] $\delta$: \begin{displaymath} \delta : [\mu] \mapsto [\omega] \,. \end{displaymath} \textbf{Example.} In the case where $\mathfrak{g}$ is an ordinary semisimple [[Lie algebra]], this reduces to the ordinary study of ordinary Chern-Simons 3-forms associated with $\mathfrak{g}$-valued 1-forms. This is described in the section \hyperlink{SemisimpLie}{On semisimple Lie algebras}. \hypertarget{chernsimons_and_curvature_characteristic_forms}{}\subsubsection*{{Chern-Simons and curvature characteristic forms}}\label{chernsimons_and_curvature_characteristic_forms} For $\mathfrak{g}$ a [[∞-Lie algebra|Lie n-alghebra]], let $\mathbf{B}G := \mathbf{cosk}_{n+1} \exp(\mathfrak{g})$ be the [[∞-Lie group]] obtained by [[Lie integration]] from it. For $X$ a [[paracompact space|paracompact]] [[smooth manifold]] with [[good open cover]] $\{U_i \to X\}$ whose [[Cech nerve]] we write $C(U)$, a [[cocycle]] for a $G$-[[principal ∞-bundle]] on $X$ is cocycle with coefficients in the simplicial sheaf \begin{displaymath} \mathbf{B}G = \mathbf{cosk}_{n+1}((U,[k]) \mapsto \{ \Omega^\bullet_{vert}(U \times \Delta^k) \leftarrow CE(\mathfrak{g}) \}) \,. \end{displaymath} We say an $\infty$-connection on this is an extension to a cocycle with coefficients in the simplicial sheaf \begin{displaymath} \mathbf{B}G_{diff} = \mathbf{cosk}_{n+1}((U,[k]) \mapsto \left\{ \itexarray{ \Omega^\bullet_{vert}(U \times \Delta^k) &\leftarrow& CE(\mathfrak{g}) &&& underlying \; cocycle \\ \uparrow && \uparrow \\ \Omega^\bullet(U\times \Delta^k) &\stackrel{}{\leftarrow}& W(\mathfrak{g}) &&& connection } \right\} \,. \end{displaymath} The diagrams on the left encode those $\mathfrak{g}$-valued forms on $U \times \Delta^k$ whose [[curvature]] vanishes on $\Delta^k$. One can show that one can always find a \emph{genuine} $\infty$-connection: one for which the curvatures have no leg along $\Delta^k$, in that they land in $\Omega^\bullet(U) \otimes C^\infty(\Delta^k)$. For those the above diagram extends to \begin{displaymath} \itexarray{ \Omega^\bullet(U \times \Delta^k)_{vert} &\leftarrow& CE(\mathfrak{g}) &&& underlying \; cocycle \\ \uparrow && \uparrow \\ \Omega^\bullet(U\times \Delta^k) &\stackrel{}{\leftarrow}& W(\mathfrak{g}) &&& connection \\ \uparrow && \uparrow \\ \Omega^\bullet(U) &\leftarrow& inv(\mathfrak{g}) &&& curvature } \,. \end{displaymath} This defines the [[simplicial presheaf]] that classifies [[connections on ∞-bundles]]. By [[pasting]]-postcomposition with the above diagrams for an invariant polynomial we obtain connections with values in $b^n \mathbb{R}$ \begin{displaymath} \itexarray{ \Omega^\bullet_{vert}(U \times \Delta^k) &\leftarrow& CE(\mathfrak{g}) &\stackrel{\mu}{\leftarrow}& CE(b^{n-1}\mathbb{R}) &&& underlying \; cocycle \\ \uparrow && \uparrow && \uparrow \\ \Omega^\bullet(U\times \Delta^k) &\stackrel{}{\leftarrow}& W(\mathfrak{g}) &\stackrel{(cs,\langle- \rangle)}{\leftarrow}& W(b^{n-1}\mathbb{R}) &&& Chern-Simons forms \\ \uparrow && \uparrow && \uparrow \\ \Omega^\bullet(U) &\leftarrow& inv(\mathfrak{g}) &\stackrel{\langle -\rangle}{\leftarrow}& CE(b^n \mathbb{R}) &&& curvature\;characteristic\;form } \,, \end{displaymath} where in the bottom row we have the [[curvature characteristic forms]] $\langle F_\nabla\rangle$ coresponding to the connection, and in the middle the corresponding [[Chern-Simons forms]]. More details for the moment at [[∞-Chern-Weil theory introduction]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[∞-Lie algebra cocycle]] \item [[Chern-Simons element]] \item \textbf{invariant polynomial}, [[invariant theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Invariant polynomials for Lie algebras of [[simple Lie groups]] are disussed in \begin{itemize}% \item [[José de Azcárraga]], A. J. Macfarlane, A. J. Mountain, J. C. Perez Bueno, \emph{Invariant tensors for simple groups}, Nucl. Phys. B510 (1998) 657-687 (\href{http://arxiv.org/abs/physics/9706006}{arXiv:physics/9706006}) \end{itemize} A standard textbook account of the traditional theory is in volume III of \begin{itemize}% \item [[Werner Greub]], [[Stephen Halperin]], [[Ray Vanstone]], \emph{[[Connections, Curvature, and Cohomology]]} Academic Press (1973) \end{itemize} The notion of invariant polynomials of $L_\infty$-algebras has been introduced in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{$L_\infty$-connections} (). \end{itemize} The abstract characterization is due to \begin{itemize}% \item [[Daniel Freed]], [[Michael Hopkins]], \emph{Chern-Weil forms and abstract homotopy theory}, Bull. Amer. Math. Soc. 50 (2013), 431-468 (\href{http://arxiv.org/abs/1301.5959}{arXiv:1301.5959}) \end{itemize} An account in the more general context of Lie theory in [[cohesive (infinity,1)-toposes]] is in section 3.3.11 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} . \end{itemize} [[!redirects algebra of invariant polynomials]] [[!redirects dg-algebra of invariant polynomials]] [[!redirects invariant polynomials]] \end{document}