\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{inverse image} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \begin{quote}% This page is about \textbf{inverse images of sheaves} and related subjects. For the set-theoretic operation, see [[preimage]]. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{inverse_images}{}\section*{{Inverse images}}\label{inverse_images} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{on_presheaves}{on presheaves}\dotfill \pageref*{on_presheaves} \linebreak \noindent\hyperlink{on_sheaves}{on sheaves}\dotfill \pageref*{on_sheaves} \linebreak \noindent\hyperlink{on_sheaves_on_topological_spaces}{on sheaves on topological spaces}\dotfill \pageref*{on_sheaves_on_topological_spaces} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{inverse image} operation is the [[left adjoint]] part $f^*$ of a [[geometric morphism]] $(f^* \dashv f_*) : E \stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}} F$ of [[topos]]. Given a morphism $f : X \to Y$ of [[site]]s, the \emph{inverse image} operation of the induced geometric morphism $Sh(X) \to Sh(Y)$ on [[categories of sheaves]] is a [[functor]] \begin{displaymath} f^{-1} : Sh(Y) \to Sh(X) \end{displaymath} that may be interpreted as encoding the idea of \emph{pulling back along $f$} the ``bundle of which the sheaf is the sheaf of sections''. In the case that $X$ and $Y$ are (the [[site]]s corresponding to) [[topological space]]s this interpretation becomes literally true: the inverse image of a sheaf on topological spaces is the pullback operation on the corresponding [[etale space]]s. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[site|morphisms of sites]] $f : X \to Y$ coming from a [[functor]] $f^t : S_Y \to S_X$ of the underlying [[category|categories]]. \hypertarget{on_presheaves}{}\subsubsection*{{on presheaves}}\label{on_presheaves} The [[direct image]] operation $f_* : PSh(X) \to PSh(Y)$ on [[presheaf|presheaves]] is just precomposition with $f^t$ \begin{displaymath} \itexarray{ S_Y^{op} &\stackrel{f_* F}{\to}& Set \\ \downarrow^{f^t} & \nearrow_{F} \\ S_X^{op} } \,. \end{displaymath} The \textbf{inverse image} operation \begin{displaymath} f^{-1} : PSh(Y) \to PSh(X) \end{displaymath} on [[presheaf|presheaves]] is the [[adjoint functor|left adjoint]] to the direct image operation on presheaves, hence the left [[Kan extension]] \begin{displaymath} f^{-1} F := Lan_{f^t} F \end{displaymath} of a [[presheaf]] $F$ along $f^t$. \hypertarget{on_sheaves}{}\subsubsection*{{on sheaves}}\label{on_sheaves} The inverse image operation on the [[category of sheaves]] $Sh(Y) \subset PSh(Y)$ inside the category of presheaves involves [[Kan extension]] followed by [[sheafification]]. First notice that \begin{ulemma} The [[direct image]] operation $f_* : PSh(X) \to PSh(Y)$ restricts to a functor $f_* : Sh(X) \to Sh(Y)$ that sends sheaves to sheaves. \end{ulemma} \begin{proof} The direct image $f_* : PSh(X) \to PSh(Y)$ is more generally characterized by \begin{displaymath} Hom_{PSh(Y)}(A, f_* F) \simeq Hom_{PSh(X)}(\hat {f^t} A, F) \end{displaymath} where $\hat f^t$ is the [[Yoneda extension]] of $Y \circ f^t : Y \to PSh(X)$ to a functor $\hat {f^t} : PSh(Y) \to PSh(X)$, because using the [[co-Yoneda lemma]] and the colim expression for the [[Yoneda extension]] we have \begin{displaymath} \begin{aligned} Hom(A, f_* F) & \simeq Hom(colim_{Y(U) \to A}) U, f_* F) \\ & \simeq \lim_{Y(U) \to A} Hom(U, f_* F) \\ & \simeq \lim_{Y(U) \to A} F(f^t(U)) \\ & \simeq Hom( colim_{Y(U) \to A} f^t(U), F ) \\ & \simeq Hom(\hat {f^t}(A), F) \,. \end{aligned} \end{displaymath} Let now $\pi : B \to A$ be a [[local isomorphism]] in $PSh(Y)$. By definition of morphism of [[site]]s we have that \begin{displaymath} \hat {f^t}(\pi) : \hat{f^t}(B) \to \hat{f^t}(A) \end{displaymath} is a [[local isomorphism]] in $X$. From this and the above we obtain the isomorphism \begin{displaymath} Hom(B, f_* F) \simeq Hom(\hat {f^t}(B), F) \stackrel{\simeq}{\to} Hom(\hat {f^t}(A), F) \simeq Hom(A, f_* F) \,, \end{displaymath} where the isomorphism in the middle is due to the fact that $F$ is a sheaf on $X$. Since this holds for all local isomorphism $\pi : B \to A$ in $PSh(Y)$, $f_* F$ is a sheaf on $Y$. \end{proof} \begin{udefn} For $f : X \to Y$ a morphism of [[site]]s, the \textbf{inverse image of sheaves} is the functor \begin{displaymath} f^{-1} : Sh(Y) \to Sh(X) \end{displaymath} defined as the inverse image on presheaves followed by [[sheafification]] \begin{displaymath} f^{-1} : Sh(Y) \hookrightarrow PSh(Y) \stackrel{Lan_{f^t}}{\to} PSh(X) \stackrel{\bar{-}}{\to} Sh(X) \,. \end{displaymath} \end{udefn} \begin{uproposition} The inverse image $f^{-1} : Sh(Y) \to Sh(X)$ of sheaves has the following properties: \begin{itemize}% \item it is [[left adjoint]] to the [[direct image]] $(f^{-1} \dashv f_*)$; \item it therefore commutes with small [[colimit]]s but is in addition left [[exact functor|exact]] in that it commutes with finite [[limit]]s. \end{itemize} \end{uproposition} \begin{proof} The left-adjointness is obtained by the following computation, for any two $F \in Sh(X)$ and $G \in Sh(Y)$ and using the above facts as well as the fact that [[sheafification]] $\bar {(-)} : PSh(X) \to Sh(X)$ is [[left adjoint]] to the inclusion $Sh(X) \hookrightarrow PSh(X)$: \begin{displaymath} \begin{aligned} Hom_{Sh(Y)}(G, f_*F) & \simeq Hom_{PSh(Y)}(G, f_* F) \\ & \simeq Hom_{PSh(X)}(Lan_{f^t} G, F) \\ & \simeq Hom_{Sh(X)}( \bar{(Lan_{f^t} G)}, F) \\ & =: Hom_{Sh(X)}(f^{-1}G, F) \end{aligned} \,. \end{displaymath} The proof of left-exactness requires more technology and work. \end{proof} \hypertarget{on_sheaves_on_topological_spaces}{}\subsubsection*{{on sheaves on topological spaces}}\label{on_sheaves_on_topological_spaces} In the case where the [[site]]s $X$ and $Y$ in question are given by [[category of open subsets|categories of open subsets]] of [[topological space]]s denoted, by an abuse of symbols, also by $X$ and $Y$, one can identify sheaves with their corresponding [[etale space]]s over $X$ and $Y$. In that case the inverse image is simply obtained by the pullback along the continuous map $f : X \to Y$ of the corresponding [[etale space]]s. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item See also [[restriction and extension of sheaves]]. \item It follows that direct image and inverse image of sheaves define a [[geometric morphism]] $f : Sh(X) \to Sh(Y)$ of [[sheaf]] [[topos|topoi]] \item Generally, therefore, the left adjoint partner in the adjoint pair defining a [[geometric morphism]] of [[topos|topoi]] (or abelian categories of quasicoherent sheaves) is called the \textbf{inverse image functor}. In fact more general in geometry, including [[noncommutative geometry|noncommutative]] morphisms often induce or are defined via pairs of adjoint functors among some associated categories of objects over a geometric space; then the left adjoint part is called the inverse image part. Geometers also often say inverse image for an arbitrary functor of the form $f^*$ in a [[fibered category]]. For abelian categories of sheaf-like objects, the corresponding higher derived functors of inverse image functors are sometimes called higher (derived) inverse image functors. \item The other adjoint to the [[direct image]], the [[adjoint functor|right adjoint]], is (if it exists) the [[restriction and extension of sheaves|extension]] of sheaves. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The standard example is that where $X$ and $Y$ are [[topological space]]s and $S_X = Op(X)$, $S_Y = Op(Y)$ are their [[category of open subsets|categories of open subsets.]] A [[continuous map]] $f : X \to Y$ induces the obvious functor $f^{-1} : Op(Y) \to Op(X)$, since [[preimages]] of open subsets under continuous maps are open. Hence presheaves canonically push-forward \begin{displaymath} f_* : PSh(X) \to PSh(Y) \end{displaymath} They do not in the same simple way pull back, since images of open subsets need not be open. The Kan extension computes the best possible approximation: The inverse image $(f^{-1})^\dagger : PSh(Y) \to PSh(X)$ sends $F \in PSh(Y)$ to \begin{displaymath} f^\dagger F : U \mapsto colim_{(U \to f^{-1}(V)) \in (const_U, f^{-1})} F(V) \,. \end{displaymath} This approximates the possibly non-open subset $f^{-1}(V)$ by all open subsets $U$ \emph{inside} it. On the other hand, the extension $(f^{-1})^\ddagger : PSh(Y) \to PSh(X)$ sends $F \in PSh(Y)$ to \begin{displaymath} f^\dagger F : U \mapsto colim_{(f^{-1}(V) \to U) \in (f^{-1},const_U)} F(V) \,. \end{displaymath} This approximates the possibly non-open subset $f^{-1}(V)$ by all open subsets $U$ \emph{containing} it. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[derived inverse image]] \item [[exceptional inverse image]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} for the general description in terms of Kan extension and sheafification see section 17.5 of \begin{itemize}% \item Kashiwara-Schapira, [[Categories and Sheaves]] \end{itemize} For the description in terms of pullback of etale spaces see secton VII.1 of \begin{itemize}% \item MacLane-Moerdijk, [[Sheaves in Geometry and Logic]] \end{itemize} [[!redirects inverse image]] [[!redirects inverse images]] [[!redirects inverse image functor]] \end{document}