\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ionad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{sets_groupoids_or_categories}{Sets, groupoids, or categories?}\dotfill \pageref*{sets_groupoids_or_categories} \linebreak \noindent\hyperlink{morphisms_of_ionads}{Morphisms of ionads}\dotfill \pageref*{morphisms_of_ionads} \linebreak \noindent\hyperlink{the_topos_of_opens}{The topos of opens}\dotfill \pageref*{the_topos_of_opens} \linebreak \noindent\hyperlink{bases_of_ionad_structures}{Bases of ionad structures}\dotfill \pageref*{bases_of_ionad_structures} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} As a [[Grothendieck topos]] is a [[categorification|categorified]] [[locale]], so an ionad is a categorified [[topological space]]. While the opens are primary in toposes and locales, the points are primary in ionads and topological spaces. [[Richard Garner]] developed the theory of ionads, in which the [[topos]] $Set^X$ plays an role analogous to that of the [[lattice]] $\mathbb{2}^X$ (the [[power set]] of $X$) in the theory of topological spaces. Intuitively, we are [[categorification|categorifying]] the [[subobject classifier]] $\mathbb{2}\in Set$ to the ``categorified subobject classifier'' $Set\in Cat$ (which classifies [[discrete opfibrations]]. The word `ionad' is Irish for a location, place, or site; `Ionad' often translates `Centre' in titles of institutions. It is pronounced /nd/ (roughly `INN-ad' or `UNN-ad', not `i-NAD' or `yonad'; `-' in a North Slavic language), or more precisely ndeast in Munster), following \href{https://secure.wikimedia.org/wikipedia/en/wiki/Irish_phonology}{Wikipedia}. The plural (which you can use if you like to use `topoi' too) is `ionaid' (/n/, `INN-adge' or `UNN-adge', `-', nd). We could go on to decline it out of the nominative case, but now it's getting silly. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Recall that a [[topological space|topology]] on a set $X$ can be defined by giving its interior operator, an operation $Int\colon \mathbb{2}^X \to \mathbb{2}^X$ (where $\mathbb{2}$ is the poset of [[truth values]]) such that \begin{itemize}% \item $A \supseteq Int(A)$, \item $Int(Int(A)) \supseteq Int(A)$, \item $Int(X) = X$, and \item $Int(A \cap B) = Int(A) \cap Int(B)$ \end{itemize} for all [[subsets]] $A, B$ of $X$. In more sophisticated language, $Int$ is a finite [[meet]]-preserving [[comonad]] on the [[power set]] of $X$. [[categorification|Categorifying]] (mostly), we have this: \begin{udefn} An \textbf{ionad} is a set $X$ together with a [[left exact functor|finite limit-preserving]] [[comonad]] $Int_X$ on the category $Set^X$. An ionad is \textbf{bounded} if the comonad is [[accessible monad|accessible]]. \end{udefn} Although Garner does not require an ionad to be bounded, the nicest results hold for them, and all of his applications involve only bounded ionads. In fact, Garner writes, `Indeed, the existence of unbounded ionads is a problem that seems to be independent of the axioms of [[Zermelo-Fraenkel set theory]].' (Section 3.8). \begin{udefn} Bounded ionads give rise to exactly the Grothendieck toposes with [[point of a topos|enough points]] as their topos of coalgebras. (See below) \end{udefn} \hypertarget{sets_groupoids_or_categories}{}\subsubsection*{{Sets, groupoids, or categories?}}\label{sets_groupoids_or_categories} It may seem odd to take $X$ to be a \emph{set} rather than something else such as a [[groupoid]] or a [[category]]. An analogous definition can be given where $X$ is a groupoid or a category, of course, but the reason for taking it to be a set is that it makes the analogy to classical topological spaces closer. Consider the following three notions: \begin{enumerate}% \item A set $X$ together with a finite-limit-preserving comonad on its powerset $\mathbb{2}^X$. \item A set $X$ equipped with an [[equivalence relation]] (which we can regard as a [[preorder]] that happens to be symmetric) together with a finite-limit-preserving comonad on the hom-preorder $\mathbb{2}^X$. \item A [[preorder]] $X$ together with a finite-limit-preserving comonad on $\mathbb{2}^X$. \end{enumerate} All three of these \emph{induce} a topology on the underlying set of $X$. But it is (1) that is \emph{exactly} a topological space: (2) and (3) include the extra data of a (perhaps symmetric) preorder on $X$ that maps bijectively-on-objects into the [[specialization preorder]] of that topology. However, as in other cases such as [[Segal categories]]/[[complete Segal spaces]] and [[generalized multicategories]], another way to ``get rid of extra data'' is to force it to duplicate data that's already present (a ``completeness'' condition). Thus we could consider instead (still in the uncategorified case): \begin{itemize}% \item A structure as in (2) above, but such that the given equivalence relation coincides with the relation ``$x$ and $y$ are in all the same open sets'' (which it automatically \emph{implies}). \item A structure as in (3) above, but such that the given preorder coincides with the specialization preorder. \end{itemize} These would give equivalent definitions to (1), but may be better-behaved in some ways. In [[homotopy type theory]] without [[sets cover]], they would no longer be equivalent, but the groupoidal/preorder versions might be better. For ionads the corresponding definitions would be \begin{itemize}% \item A groupoid $X$ with a finite-limit-preserving comonad on $Set^X$ such that the induced functor from $X$ to the category of points of the resulting topos is [[pseudomonic functor|pseudomonic]]. \item A category $X$ with a finite-limit-preserving comonad on $Set^X$ such that the induced functor from $X$ to the category of points of the resulting topos is [[fully faithful]]. \end{itemize} (Asking that these functors also be surjective on objects would be a [[sober space|sobriety]] condition on an ionad.) When categorifying further to ``$n$-ionads'' and ``$\infty$-ionads'', the possible options multiply further; but that is probably a topic for another page. For discussion of these questions, see the \href{https://nforum.ncatlab.org/discussion/5857}{nForum thread}. \hypertarget{morphisms_of_ionads}{}\subsection*{{Morphisms of ionads}}\label{morphisms_of_ionads} Recall that, given two topological spaces $X$ and $Y$, a [[continuous map]] from $X$ to $Y$ is a [[function]] $f\colon X \to Y$ (on the [[underlying set]]s) such that \begin{itemize}% \item $f^*(Int(A)) \subseteq Int(f^*(A))$ \end{itemize} for every subset $A$ of $Y$, where $f^*$ takes the [[preimage]]. Categorifying (and adding a coherence law), we have this: \begin{udefn} Given ionads $X$ and $Y$, a \textbf{continuous map} from $X$ to $Y$ consists of a [[function]] $f\colon X \to Y$ (on the underlying sets of points) together with a [[natural transformation]] \begin{displaymath} Int_f\colon f^* \circ Int_Y \to Int_X \circ f^* , \end{displaymath} where $f^*\colon Set^Y \to Set^X$ is $Set^f$, such that $Int_f$ `respects the comonad structures'. \end{udefn} I need to figure out exactly what this last clause means. Note that $Int_f$ is part of the [[extra structure|structure]] here; it is not merely a property. (In other words, the [[forgetful functor]] from ionads to topological spaces is not [[faithful functor|faithful]].) There is an obvious notion of [[2-morphism]], which turns out to be trivial (but probably would not be if $X$ were allowed to be a groupoid). However, the category of ionads is presumably (like [[Top]]) still a [[locally prosetal 2-category]] under the [[specialisation order]]. \hypertarget{the_topos_of_opens}{}\subsection*{{The topos of opens}}\label{the_topos_of_opens} As every topological space has a [[Heyting algebra]] (in fact a [[frame]], or dually a [[locale]]) of open subsets, so every ionad has a [[topos]] (in fact a [[Grothendieck topos]], if it is bounded) of opens. \begin{udefn} Given an ionad $X$, an \textbf{open} in $X$ is simply a [[algebra of a monad|coalgebra]] of the comonad $Int_X$. \end{udefn} The opens of $X$ form a topos $\Omega(X)$, and we have a [[surjective geometric morphism|surjective]] [[geometric morphism]] from $Set^X$ to $\Omega(X)$. In fact, an ionad may be defined as a set $X$ together with a surjective geometric morphism from $Set^X$ to some topos, much as a topological space may be defined as a set $X$ together with a surjective locale morphism from $\mathbb{2}^X$ to some [[locale]]. The topos $\Omega(X)$ is essentially unique by surjectivity, and this also shows that $\Omega(X)$ has [[enough points]]. Just as $\Omega(X)$ is a [[frame]] whenever $X$ is a topological space, so $\Omega(X)$ should be a [[Grothendieck topos]] when $X$ is an ionad. In fact, this holds only for \emph{bounded} ionads; an ionad may be defined to be bounded if and only if its topos of opens is [[cocomplete category|cocomplete]] (or equivalently a Grothendieck topos). A continous map between topological spaces may be given by a function $f\colon X \to Y$ and a commuting square \begin{displaymath} \array { \Omega(Y) & \to & \Omega(X) \\ \downarrow & & \downarrow \\ \mathbb{2}^Y & \overset{f^*}\to & \mathbb{2}^X } \end{displaymath} Similarly, a continuous map between ionads may be given by a function $f\colon X \to Y$ and a commuting square \begin{displaymath} \array { \Omega(Y) & \to & \Omega(X) \\ \downarrow & & \downarrow \\ Set^Y & \overset{f^*}\to & Set^X } \end{displaymath} Without loss of generality, we may require this square to commute on the nose; this is related to the triviality of $2$-morphisms in the category of ionads. Note that the map $\Omega(Y) \to \Omega(X)$ must be the preimage half of a [[geometric morphism]] from $\Omega(X)$ to $\Omega(Y)$; we may also define a continous map $X$ to $Y$ to be such a geometric morphism together with a compatible map between the generating points of the toposes. \hypertarget{bases_of_ionad_structures}{}\subsection*{{Bases of ionad structures}}\label{bases_of_ionad_structures} \ldots{} \hypertarget{references}{}\subsection*{{References}}\label{references} Ionads have been introduced and studied in \begin{itemize}% \item [[Richard Garner]], \emph{Ionads}, J. Pure Appl. Algebra 216 (2012), no. 8-9, 1734--1747. (\href{http://arxiv.org/abs/0912.1415}{arXiv}) (\href{http://dx.doi.org/10.1016/j.jpaa.2012.02.013}{doi}) (\href{http://comp.mq.edu.au/~rgarner/Papers/Ionads.pdf}{author-archived version of published copy}) \end{itemize} Some basic aspects of the theory are developed there, and applications to [[topology]], [[logic]] and [[geometry]] are discussed. [[!redirects ionaid]] \end{document}