\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{iterated inductive definitions} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{noniterated_case}{Non-iterated case}\dotfill \pageref*{noniterated_case} \linebreak \noindent\hyperlink{iterated_inductive_definitions}{Iterated inductive definitions}\dotfill \pageref*{iterated_inductive_definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{prooftheoretic_results}{Proof-theoretic results}\dotfill \pageref*{prooftheoretic_results} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Systems of iterated inductive definitions are important formal systems introduced by Feferman (1970), especially of use in proof-theoretic investigations. They are obviously related as well to [[inductive types]] in [[type theory]]. Below we record the main definitions and proof-theoretic results about these systems. See also the table at [[ordinal analysis]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{noniterated_case}{}\subsubsection*{{Non-iterated case}}\label{noniterated_case} Let us begin by the case of a non-iterated inductive definition, as incarnated in the system ID$_1$, which axiomatizes the least fixed point of an arithmetically definable positive inductive definition. A subset $I \subseteq \mathbb{N}$ is called inductively defined if it is the least fixed point of a monotone operator $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$. In order to formalize this situation relative to first-order number theory, we consider operators $\Gamma_A$ defined by positive operator forms. The language of $ID_1$, $\mathcal{L}_{ID_1}$, is obtained from that of first-order number theory, $\mathcal{L}_{\mathbb{N}}$, by the addition of a set (or predicate) constant $I_A$ for every $X$-positive formula $A(X,x)$ in $\mathcal{L}_{\mathbb{N}}[X]$ that only contains $X$ (a new set variable) and $x$ (a number variable) as free variables. The term \emph{$X$-positive} means that $X$ only occurs positively in $A$. If we take the background logic to be constructive, it is common to require that $X$ only occurs \emph{strictly} positively (never to the left of an implication). We allow ourselves a bit of set-theoretic notation, and we consider formulas $F(x)$ in a distinguished free variable $x$ to represent the subclass $\{ x\in\mathbb{N} \mid F(x) \}$. We write $s\in F$ to mean $F(s)$, and if $F$ and $G$ are two such formulas, we write $F \subseteq G$ to mean $\forall x. F(x) \to G(x)$. Then $ID_1$ contains the axioms of first-order number theory with the induction scheme extended to the new language as well as the axiom \begin{displaymath} (ID_1)^1\qquad A(I_A) \subseteq I_A \end{displaymath} and the scheme \begin{displaymath} (ID_1)^2\qquad A(F) \subseteq F \to I_A \subseteq F \end{displaymath} where $F(x)$ ranges over all $\mathcal{L}_{ID_1}$-formulas. Note that $(ID_1)^1$ expresses that $I_A$ is closed under the arithmetically definable set operator $\Gamma_A(S) = \{ x\in\mathbb{N} \mid \mathbb{N} \vDash A(S,x) \}$, while $(ID_1)^2$ expresses that $I_A$ is the least such (at least among sets definable in $\mathcal{L}_{ID_1}$). Thus, $I_A$ is meant to be the least pre-fixed-point, and hence the least fixed point of the operator $\Gamma_A$. \hypertarget{iterated_inductive_definitions}{}\subsubsection*{{Iterated inductive definitions}}\label{iterated_inductive_definitions} It is possible to define systems of finitely iterated inductive definitions by simply repeating the process of adding a level of inductive definitions and extending the existing schemas to the new language. It's important that the constants $I_A$ for the previous levels may occur negatively in the operators for the later levels. So these systems can be defined in stages by (metamathematical) induction on $\mathbb{N}$. However, to define the transfinitely iterated variants another approach is needed. To define the system of $\nu$-times iterated inductive definitions, where $\nu$ is an [[ordinal]], let ${\prec}$ be a primitive recursive well-ordering of order type $\nu$. We use Greek letters to denote elements of the field of ${\prec}$. The language of $ID_\nu$, $\mathcal{L}_{ID_\nu}$ is obtained from $\mathcal{L}_{\mathbb{N}}$ by the addition of a binary predicate constant $J_A$ for every $X$-positive $\mathcal{L}_{\mathbb{N}}$X,Y formula $A(X,Y,\mu,x)$ that contains at most the shown free variables, where $X$ is again a unary (set) variable, and $Y$ is a fresh binary predicate variable. We write $x\in J_A^\mu$ instead of $J_A(\mu,x)$, thinking of $x$ as a distinguished variable in the latter formula. The system $ID_\nu$ is now obtained from the system of first-order number theory by expanding the induction scheme to the new language and adding the scheme \begin{displaymath} (TI_\nu)\qquad TI({\prec},F) \end{displaymath} expressing transfinite induction along ${\prec}$ for an arbitrary $\mathcal{L}_{ID_\nu}$ formula $F$ as well as the axiom \begin{displaymath} (ID_\nu)^1\qquad \forall\mu\prec\nu. A^\mu(J_A^\mu) \subseteq J_A^\mu \end{displaymath} and the scheme \begin{displaymath} (ID_\nu)^2\qquad \forall\mu\prec\nu. A^\mu(F) \subseteq F \to J_A^\mu \subseteq F \end{displaymath} where $F(x)$ is an arbitary $\mathcal{L}_{ID_\nu}$ formula. In $(ID_\nu)^1$ and $(ID_\nu)^2$ we used the abbreviation $A^\mu(F)$ for the formula $A(F, (\lambda\gamma y. \gamma\prec\mu \wedge y\in J_A^\gamma), \mu, x)$, where $x$ is the distinguished variable. We see that these express that each $J_A^\mu$, for $\mu\prec\nu$, is the least fixed point (among definable sets) for the operator $\Gamma_A^\mu(S) = \{ n\in\mathbb{N} \mid (\mathbb{N},(J_A^\gamma)_{\gamma\prec\mu}) \vDash A(S,(J_A^\gamma)_{\gamma\prec\mu},\mu,n) \}$. Note how all the previous sets $J_A^\gamma$, for $\gamma\prec\mu$, are used as parameters. We define $ID_{\prec\nu} = \bigcup_{\xi\prec\nu} ID_\xi$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} It is for instance possible to define the constructive ordinal number classes $\mathcal{O}_\mu$ for $\mu\le\nu$ in $ID_\nu$. Here we describe the simpler example of the constructive tree classes. The first tree class $\mathcal{T}_0$ is a non-iterated inductive definition, which informally states that \begin{itemize}% \item $0 \in \mathcal{T}_0$, and \item if $e$ is (the code of) a total recursive function enumerating elements of $\mathcal{T}_0$, then $e+1 \in \mathcal{T}_0$. \end{itemize} Elements of $\mathcal{T}_0$ represent $\mathbb{N}$-branching trees. Formally, $\mathcal{T}_0$ is represented by $I_A$ for the operator $A(X,x)$ defined by \begin{displaymath} x = 0 \vee (x \ne 0 \wedge \forall n. \{x-1\}(n) \in X). \end{displaymath} The higher tree classes $\mathcal{T}_\mu$, for $\mu\prec\nu$, are given by an iterated inductive definition, which informally states that \begin{itemize}% \item $0 \in \mathcal{T}_\mu$, and \item if $e$ is (the code of) a total recursive function enumerating elements of $\mathcal{T}_\mu$, then $\langle 0,e\rangle \in \mathcal{T}_\mu$, and \item if $\gamma\prec\mu$ and $e$ is (the code of) a partial recursive function whose domain includes $\mathcal{T}_\gamma$ and whose values thereon are in in $\mathcal{T}_\mu$, then $\langle 1+\gamma,e\rangle \in \mathcal{T}_\mu$. \end{itemize} Now the elements represent infinite trees branching at each internal node over either $\mathbb{N}$ or one of the previous tree classes $\mathcal{T}_\gamma$, for $\gamma\prec\mu$. To define these higher tree classes, consider the operator form $A(X,Y,\mu,x)$ defined by the disjunction of the corresponding three clauses: \begin{itemize}% \item $x = 0$, \item $\exists e. x = \langle 0,e\rangle \wedge \forall n. \{e\}(n) \in X$, \item $\exists \gamma, e. \gamma \prec \mu \wedge x = \langle 1+\gamma,e\rangle \wedge \forall y \in Y^\gamma. \{e\}(y) \in X$. \end{itemize} In the last clause we used the class term $Y^\gamma$, thinking of $y$ in $Y(\gamma,y)$ as the distinguished variable. \hypertarget{prooftheoretic_results}{}\subsection*{{Proof-theoretic results}}\label{prooftheoretic_results} The book by Buchholz, Feferman, Pohlers and Sieg (1981) contains most proof-theoretic results concerning these systems. For example, the [[proof-theoretic ordinal]] of $ID_\nu$ is $\psi_\Omega(\varepsilon_{\Omega_\nu+1})$ for $\nu$ a limit ordinal, and that of $ID_{\prec\nu}$ is $\psi_\Omega(\Omega_\nu)$ when $\nu=\omega^\rho$ for $\rho$ a limit ordinal. Girard (1982) gave another analysis of the $ID_\nu$ systems using what he calls $\Pi^1_2$-logic, making heavy use of [[dilators]]. See [[ordinal analysis]] for the relations between some of the $ID_\nu$ and $ID_{\prec\nu}$ systems and other systems. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Buchholz, Feferman, Pohlers and Sieg: Iterated inductive definitions and subsystems of analysis: recent proof-theoretical studies, Lecture Notes in Mathematics 897 (1981). \item Feferman: Formal theories for transfinite iterations of generalized inductive definitions and some subsystems of analysis. In: Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968). 1970. \item Feferman: The proof theory of classical and constructive inductive definitions, a 40 year saga, 1968-2008. In: Ways of Proof Theory. 2013. \href{https://math.stanford.edu/~feferman/papers/id-saga.pdf}{pdf} \item Girard: Proof-theoretic investigations of inductive definitions, I. In: Logic and algorithmic (Proc. Conf., Zurich, 1980). 1982. \item Pohlers: Subsystems of Set Theory and Second Order Number Theory. In: Handbook of Proof Theory. 1998. \end{itemize} \end{document}