\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{jet bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{concrete}{Concrete}\dotfill \pageref*{concrete} \linebreak \noindent\hyperlink{GeneralAbstractDefinition}{General abstract}\dotfill \pageref*{GeneralAbstractDefinition} \linebreak \noindent\hyperlink{application}{Application}\dotfill \pageref*{application} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A jet can be thought of as the [[infinitesimal]] [[germ]] of a [[section]] of some [[bundle]] or of a map between spaces. Jets are a coordinate free version of Taylor-polynomials and Taylor series. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{concrete}{}\subsubsection*{{Concrete}}\label{concrete} For \begin{displaymath} p \coloneqq E \to X \end{displaymath} a [[surjective submersion]] of [[smooth manifolds]] and $k \in \mathbb{N}$, the bundle \begin{displaymath} J^k P \to X \end{displaymath} of \textbf{order-$k$ jets of sections of $p$} is the bundle whose [[fiber]] over a point $x \in X$ is the space of equivalence classes of [[germ|germs]] of [[section|sections]] of $p$, where two germs are considered equivalent if their first $k$ partial [[derivative|derivatives]] at $x$ coincide. In the case when $p$ is a trivial bundle $p:X\times Y \to X$ its sections are canonically in bijection with maps from $X$ to $Y$ and two sections have the same partial derivatives iff the partial derivatives of the corresponding maps from $X$ to $Y$ agree. So in this case the [[jet space]] $J^k P$ is called the space of jets of maps from $X$ to $Y$ and commonly denoted with $J^k(X,Y)$. In order to pass to $k \to \infty$ to form the \emph{infinite jet bundle} $J^\infty P$ one forms the [[projective limit]] over the finite-order jet bundles, \begin{displaymath} J^\infty E \coloneqq \underset{\longleftarrow}{\lim}_k J^k E = \underset{\longleftarrow}{\lim} \left( \cdots J^3 E \to J^2 E \to J^1 E \to E \right) \end{displaymath} but one has to decide in which category of [[infinite-dimensional manifolds]] to take this limit: \begin{enumerate}% \item one may form the limit formally, i.e. in [[pro-manifolds]]. This is what is implicit for instance in \hyperlink{Anderson}{Anderson, p.3-5}; \item one may form the limit in [[Fréchet manifolds]], this is farily explicit in (\hyperlink{Saunders89}{Saunders 89, chapter 7}). See at \emph{\href{Frechet+manifold#ProjectiveLimitsOfSmoothFiniteDimensionalManifolds}{Fr\'e{}chet manifold -- Projective limits of finite-dimensional manifolds}}. Beware that this is not equivalent to the pro-manifold structure (see the remark \href{Frechet+manifold#DifferenceBetweenProManifoldAndFrecherManifoldStructure}{here}). It makes sense to speak of \emph{[[locally pro-manifolds]]}. \end{enumerate} \hypertarget{GeneralAbstractDefinition}{}\subsubsection*{{General abstract}}\label{GeneralAbstractDefinition} We discuss a [[general abstract]] definition of jet bundles. Let $\mathbf{H}$ be an [[(∞,1)-topos]] equipped with [[differential cohesion]] with [[infinitesimal shape modality]] $\Im$ (or rather a tower $\Im_k$ of such, for each infinitesimal order $k \in \mathbb{N} \cup \{\infty\}$ ). For $X \in \mathbf{H}$, write $\Im(X)$ for the corresponding [[de Rham space]] object. Notice that we have the canonical morphism, the $X$-component of the [[unit of a monad|unit]] of the $\Im$-[[monad]] \begin{displaymath} i \colon X \to \Im(X) \end{displaymath} (``inclusion of constant paths into all infinitesimal paths''). The corresponding [[base change]] [[geometric morphism]] is \begin{displaymath} (i^\ast \dashv i_\ast) \;\colon\; \mathbf{H}_{/X} \stackrel{\overset{i^*}{\longleftarrow}}{\underset{Jet := i_*}{\longrightarrow}} \mathbf{H}_{/\Im(X)} \end{displaymath} \begin{defn} \label{GeneralAbstractDefinition}\hypertarget{GeneralAbstractDefinition}{} The \emph{[[jet comonad]]} is the [[(∞,1)-comonad]] \begin{displaymath} i^\ast i_\ast \;\colon\; \mathbf{H}_{/X} \longrightarrow \mathbf{H}_{/X} \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} Since [[base change]] gives even an [[adjoint triple]] $(i_! \dashv i^\ast \dashv i_\ast)$, there is a [[left adjoint]] $T_{inf} X \times_X (-)$ to the [[jet comonad]] of def. \ref{GeneralAbstractDefinition}, \begin{displaymath} T_{inf}X \times_X (-) \;\dashv\; Jet \end{displaymath} where $T_{inf} X$ is the [[infinitesimal disk bundle]] of $X$, see at \emph{\href{differential+cohesion#RelationOfInfinitesimalDiskBundleToJetBundle}{differential cohesion -- infinitesimal disk bundle -- relation to jet bundles}} \end{remark} \begin{remark} \label{LiteratureOnGeneralAbstractCharacterization}\hypertarget{LiteratureOnGeneralAbstractCharacterization}{} In the context of [[differential geometry]] the fact that the jet bundle construction is a comonad was explicitly observed in (\hyperlink{Marvan86}{Marvan 86}, see also \hyperlink{Marvan93}{Marvan 93, section 1.1}, \hyperlink{Marvan89}{Marvan 89}). It is almost implicit in (\hyperlink{KrasilshchikVerbovetsky98}{Krasil'shchik-Verbovetsky 98, p. 13, p. 17}, \hyperlink{Krasilshchik99}{Krasilshchik 99, p. 25}). In the context of [[synthetic differential geometry]] the fact that the jet bundle construction is [[right adjoint]] to the [[infinitesimal disk bundle]] construction is (\hyperlink{Kock80}{Kock 80, prop. 2.2}). In the context of [[algebraic geometry]] and of [[D-schemes]] as in (\hyperlink{BeilinsonDrinfeld}{BeilinsonDrinfeld, 2.3.2}, reviewed in \hyperlink{Paugam}{Paugam, section 2.3}), the base change comonad formulation inf def. \ref{GeneralAbstractDefinition} was noticed in (\hyperlink{Lurie}{Lurie, prop. 0.9}). \end{remark} In as in (\hyperlink{BeilinsonDrinfeld}{BeilinsonDrinfeld, 2.3.2}, reviewed in \hyperlink{Paugam}{Paugam, section 2.3}) jet bundles are expressed dually in terms of algebras in [[D-modules]]. We now indicate how the translation works. \begin{remark} \label{}\hypertarget{}{} In terms of [[differential homotopy type theory]] this means that forming ``jet types'' of [[dependent types]] over $X$ is the [[dependent product]] operation along the unit of the [[infinitesimal shape modality]] \begin{displaymath} jet(E) \coloneqq \underset{X \to \Im X}{\prod} E \,. \end{displaymath} \end{remark} \begin{defn} \label{}\hypertarget{}{} A [[quasicoherent (∞,1)-sheaf]] on $X$ is a morphism of [[(∞,2)-sheaves]] \begin{displaymath} X \to Mod \,. \end{displaymath} We write \begin{displaymath} QC(X) := Hom(X, Mod) \end{displaymath} for the [[stable (∞,1)-category]] of [[quasicoherent (∞,1)-sheaves]]. A \emph{[[D-module]]} on $X$ is a morphism of [[(∞,2)-sheaves]] \begin{displaymath} \Im (X) \to Mod \,. \end{displaymath} We write \begin{displaymath} DQC(X) := Hom(\Im (X), Mod) \end{displaymath} for the [[stable (∞,1)-category]] of D-modules. \end{defn} The \textbf{Jet algebra} functor is the [[left adjoint]] to the [[forgetful functor]] from [[associative algebra|commutative algebra]]s over $\mathcal{D}(X)$ to those over the [[structure sheaf]] $\mathcal{O}(X)$ \begin{displaymath} (Jet \dashv F) : Alg_{\mathcal{D}(X)} \stackrel{\overset{Jet}{\leftarrow}}{\underset{F}{\to}} Alg_{\mathcal{O}(X)} \,. \end{displaymath} \hypertarget{application}{}\subsection*{{Application}}\label{application} Typical [[Lagrangian]]s in [[quantum field theory]] are defined on jet bundles. Their [[variational calculus]] is governed by [[Euler-Lagrange equation]]s. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[jet prolongation]] \item [[jet space]] \item [[jet group]], [[jet groupoid]] \item [[differential equation]] \item [[evolutionary vector field]] \item [[variational bicomplex]] \begin{itemize}% \item [[local Lagrangian]] \item [[source form]], [[Lepage form]] \end{itemize} \item [[metric jet]] \item [[h-principle]] \item [[arithmetic jet space]] \end{itemize} [[!include infinitesimal and local - table]] \begin{itemize}% \item in [[homotopy theory]]/[[Goodwillie calculus]]: [[jet (∞,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Exposition of [[variational calculus]] in terms of jet bundles and [[Lepage forms]] and aimed at examples from [[physics]] is in \begin{itemize}% \item [[Jana Musilová]], [[Stanislav Hronek]], \emph{The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories}, Communications in Mathematics, Volume 24, Issue 2 (Dec 2016) (\href{https://doi.org/10.1515/cm-2016-0012}{doi.org/10.1515/cm-2016-0012}) \end{itemize} Textbook accounts and lecture notes include \begin{itemize}% \item [[Peter Michor]], \emph{Manifolds of differentiable mappings}, Shiva Publishing (1980) \href{http://www.mat.univie.ac.at/~michor/manifolds_of_differentiable_mappings.pdf}{pdf} \item [[David Saunders]], \emph{The geometry of jet bundles}, London Mathematical Society Lecture Note Series \textbf{142}, Cambridge Univ. Press 1989. \item [[Joseph Krasil'shchik]] in collaboration with Barbara Prinari, \emph{Lectures on Linear Differential Operators over Commutative Algebras}, 1998 (\href{http://diffiety.ac.ru/preprint/99/01_99.pdf}{pdf}) \item Shihoko Ishii, \emph{Jet schemes, arc spaces and the Nash problem}, \href{http://arXiv.org/abs/0704.3327}{arXiv:math.AG/0704.3327} \item G. Sardanashvily, \emph{Fibre bundles, jet manifolds and Lagrangian theory}, Lectures for theoreticians, \href{http://xxx.lanl.gov/abs/0908.1886}{arXiv:0908.1886} \item [[Peter Olver]], \emph{Lectures on Lie groups and differential equation}, chapter 3, \emph{Jets and differential invariants}, 2012 (\href{http://www.math.umn.edu/~olver/sm_/j.pdf}{pdf}) \end{itemize} Early accounts include \begin{itemize}% \item Hubert Goldschmidt, \emph{Integrability criteria for systems of nonlinear partial differential equations}, J. Differential Geom. Volume 1, Number 3-4 (1967), 269-307 (\href{http://projecteuclid.org/euclid.jdg/1214428094}{Euclid}) \end{itemize} The algebra of smooth functions of just \emph{locally} finite order on the jet bundle (``[[locally pro-manifold]]'') was maybe first considered in \begin{itemize}% \item [[Floris Takens]], \emph{A global version of the inverse problem of the calculus of variations}, J. Differential Geom. Volume 14, Number 4 (1979), 543-562. (\href{https://projecteuclid.org/euclid.jdg/1214435235}{Euclid}) \end{itemize} Discussion of the [[Fréchet manifold]] structure on infinite jet bundles includes \begin{itemize}% \item [[David Saunders]], chapter 7 \emph{Infinite jet bundles} of \emph{The geometry of jet bundles}, London Mathematical Society Lecture Note Series \textbf{142}, Cambridge Univ. Press 1989. \item M. Bauderon, \emph{Differential geometry and Lagrangian formalism in the calculus of variations}, in \emph{Differential Geometry, Calculus of Variations, and their Applications}, Lecture Notes in Pure and Applied Mathematics, 100, Marcel Dekker, Inc., N.Y., 1985, pp. 67-82. \item [[C. T. J. Dodson]], George Galanis, Efstathios Vassiliou,, p. 109 and section 6.3 of \emph{Geometry in a Fr\'e{}chet Context: A Projective Limit Approach}, Cambridge University Press (2015) \item [[Andrew Lewis]], \emph{The bundle of infinite jets} (2006) (\href{http://www.mast.queensu.ca/~andrew/notes/pdf/2006a.pdf}{pdf}) \end{itemize} Discussion of finite-order jet bundles in tems of [[synthetic differential geometry]] is in \begin{itemize}% \item [[Anders Kock]], \emph{Formal manifolds and synthetic theory of jet bundles}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques (1980) Volume: 21, Issue: 3 (\href{http://www.numdam.org/item?id=CTGDC_1980__21_3_227_0}{Numdam}) \item [[Anders Kock]], section 2.7 of \emph{Synthetic geometry of manifolds}, Cambridge Tracts in Mathematics 180 (2010). (\href{http://home.imf.au.dk/kock/SGM-final.pdf}{pdf}) \end{itemize} The [[jet comonad]] structure on the jet operation in the context of differential geometry is made explicit in \begin{itemize}% \item [[Michal Marvan]], \emph{A note on the category of partial differential equations}, in \emph{Differential geometry and its applications}, Proceedings of the Conference August 24-30, 1986, Brno ([[MarvanJetComonad.pdf:file]]) (notice that prop. 1.3 there is wrong, the correct version is in the thesis of the author) \end{itemize} with further developments in \begin{itemize}% \item [[Michal Marvan]] \emph{On the horizontal cohomology with general coefficients}, 1989 (\href{http://old.math.slu.cz/People/MichalMarvan/Annotations/horizontal.php}{web announcement}, \href{http://dml.cz/dmlcz/701469}{web archive}) \textbf{Abstract:} In the present paper the horizontal cohomology theory is interpreted as a special case of the Van Osdol bicohomology theory applied to what we call a ``jet comonad''. It follows that differential equations have well-defined cohomology groups with coefficients in linear differential equations. \item [[Michal Marvan]], section 1.1 of \emph{On Zero-Curvature Representations of Partial Differential Equations}, (1993) (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.5631}{web}) \item [[Igor Khavkine]], [[Urs Schreiber]], \emph{[[schreiber:Synthetic variational calculus|Synthetic geometry of differential equations: I. Jets and comonad structure]]} (\href{https://arxiv.org/abs/1701.06238}{arXiv:1701.06238}) \end{itemize} In the context of algebraic geometry, the abstract characterization of jet bundles as the direct images of base change along the de Rham space projection is noticed on p. 6 of \begin{itemize}% \item [[Jacob Lurie]], \emph{Notes on crystals and algebraic D-modules}, 2009 (\href{http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19%28Crystals%29.pdf}{pdf}) \end{itemize} The explicit description in terms of formal duals of [[commutative monoids]] in [[D-module]]s is in \begin{itemize}% \item [[Alexander Beilinson]], [[Vladimir Drinfeld]], \emph{[[Chiral Algebras]]} \end{itemize} An exposition of this is in section 2.3 of \begin{itemize}% \item [[Frédéric Paugam]], \emph{Homotopical Poisson Reduction of gauge theories} (\href{http://people.math.jussieu.fr/~fpaugam/documents/homotopical-poisson-reduction-of-gauge-theories.pdf}{pdf}) \end{itemize} A discussion of jet bundles with an eye towards discussion of the [[variational bicomplex]] on them is in chapter 1, section A of \begin{itemize}% \item [[Ian Anderson]], \emph{The variational bicomplex} ([[AndersonVariationalBicomplex.pdf:file]]) \end{itemize} The [[de Rham complex]] and [[variational bicomplex]] of jet bundles is discussed in \begin{itemize}% \item G. Giachetta, L. Mangiarotti, [[Gennadi Sardanashvily]], \emph{Cohomology of the variational bicomplex on the infinite order jet space}, Journal of Mathematical Physics 42, 4272-4282 (2001) (\href{http://arxiv.org/abs/math/0006074}{arXiv:math/0006074}) \end{itemize} where both versions (smooth functions being globally or locally of finite order) are discussed and compared. Discussion of jet-restriction of the [[Haefliger groupoid]] is in \begin{itemize}% \item Arne Lorenz, \emph{Jet Groupoids, Natural Bundles and the Vessiot Equivalence Method}, Thesis (\href{http://wwwb.math.rwth-aachen.de/~arne/Dissertation_Lorenz_Arne.pdf}{pdf}) \end{itemize} Discussion of jet bundles in [[supergeometry]] includes \begin{itemize}% \item Arthemy V. Kiselev, Andrey O. Krutov, appendix of \emph{On the (non)removability of spectral parameters in $\mathbb{Z}_2$-graded zero-curvature representations and its applications} (\href{http://arxiv.org/abs/1301.7143}{arXiv:1301.7143}) \end{itemize} See also \begin{itemize}% \item [[Joseph Krasil'shchik]], [[Alexander Verbovetsky]], \emph{Homological Methods in Equations of Mathematical Physics} (\href{http://arxiv.org/abs/math/9808130}{arXiv:math/9808130}) \end{itemize} In the context of [[supermanifolds]], discussion is in \begin{itemize}% \item [[Gennadi Sardanashvily]], \emph{Graded infinite order jet manifolds}, \emph{Int. J. Geom. Methods Mod. Phys. v.4 (2007) 1335-1362} (\href{https://arxiv.org/abs/0708.2434}{arXiv:0708.2434}) \end{itemize} [[!redirects jet bundles]] [[!redirects jet]] [[!redirects jets]] [[!redirects jet type]] [[!redirects jet types]] \end{document}