\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{k-ary factorization system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{factorization_systems}{}\paragraph*{{Factorization systems}}\label{factorization_systems} [[!include factorization systems - contents]] \hypertarget{ary_factorisation_systems}{}\section*{{$k$-ary factorisation systems}}\label{ary_factorisation_systems} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{infinitary_factorisation_systems}{Infinitary factorisation systems}\dotfill \pageref*{infinitary_factorisation_systems} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A $k$-ary factorization system is a generalization of (binary) [[orthogonal factorization systems]] and [[ternary factorization systems]] to factorizations into a string of $k$ morphisms. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $k \gt 0$ a [[natural number]] and $C$ a [[category]] (or $\infty$-[[infinity-category|category]]), a \textbf{$k$-ary factorisation system} on $C$ consists of $(k - 1)$ factorisation systems $(E_i, M_i)$ (for $0 \lt i \lt k$) on $C$, such that \begin{itemize}% \item $M_i \subseteq M_{i + 1}$ whenever this is meaningful (equivalently, $E_i \subseteq E_{i - 1}$). \end{itemize} We can extend this to include two other factorisation systems, one for $i = 0$ and one for $i = k$: \begin{itemize}% \item $M_0$ consists of only [[isomorphisms]]/[[equivalences]] (equivalently, $E_0$ consists of all morphisms), and \item $M_k$ consists of all morphisms (equivalently, $E_k$ consists of only isomorphisms/equivalences). \end{itemize} Given a $k$-ary factorisation system, the ([[coimage|co]])[[image]] of $(E_i,M_i)$ is the \textbf{$i$-(co)image} of the entire $k$-ary factorisation system. Note that every (higher) category has a unique $1$-ary factorisation system, since no structure at all is required. We also say that a [[groupoid]] (or $\infty$-[[infinity-groupoid|groupoid]]) has a (necessarily unique) $0$-ary factorisation system; this makes sense since we have $M_0 = M_k$ (and $E_0 = E_k$) in that case. A [[discrete category]] has a (necessarily unique) $(-1)$-ary factorisation system. A $k$-ary factorisation system may also be called a \textbf{$k$-step factorisation system} or a \textbf{$(k+1)$-stage factorisation system}. You can see why if you count the basic morphisms (steps) and objects (stages) that $k - 1$ overlapping factorisation systems produce from a morphism. \hypertarget{infinitary_factorisation_systems}{}\subsection*{{Infinitary factorisation systems}}\label{infinitary_factorisation_systems} Here is an incomplete attempt at a general definition: Fix any [[ordinal number]] (or [[opposite poset|opposite]] thereof, or any [[poset]], really) $\alpha$. Then an \textbf{$\alpha$-stage factorisation system} (in an ambient $\infty$-category $C$) consists of an $\alpha$-indexed family of factorisation systems $(E_i, M_i)$ in $C$ such that: \begin{itemize}% \item $M_i \subseteq M_j$ whenever $i \leq j$ (equivalently, $E_i \supseteq E_j$ whenever $i \leq j$), \item each morphism $f\colon X \to Y$ is both the [[inverse limit]] $\underset{i \to \infty}\lim \im_i f$ in the [[slice category]] $C/Y$ and the [[direct limit]] $\underset{i \to -\infty}\colim \coim_i f$ in the [[coslice category]] $X/C$, and \item for each $f\colon X \to Y$, $\id_Y$ is $\underset{i \to -\infty}\colim \im_i f$ and $\id_X$ is $\underset{i \to \infty}\lim \coim_i f$. \end{itemize} This seems to be correct whenever $\alpha$ really is either an ordinal or the opposite thereof, as well as some other posets such as $\omega^op + \omega$ (which is the poset of [[integers]]), but it seems to be missing something for (for example) $\omega + \omega^op$. Notice that, when $\alpha$ is \emph{both} an ordinal and the opposite thereof, we recover the above definition of an $(alpha-1)$-ary factorisation system. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For $k = 3$ one speaks of a \emph{[[ternary factorization system]]}. See there for more examples \item In an [[(∞,1)-topos]] the [[(epi, mono) factorization system]] in a [[topos]] splits up to an $\infty$-ary factorization system consisting of the [[(n-epi, n-mono) factorization systems]] (the [[n-image]]-factorization) for all $n \in \mathbb{N}$. This is called the \emph{[[Postnikov system]]}. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \href{http://golem.ph.utexas.edu/category/2010/07/ternary_factorization_systems.html}{Cafe discussion} mainy on the ternary version \item \href{https://nforum.ncatlab.org/discussion/1629}{Forum discussion} including the k-ary case, even when k is infinite \end{itemize} [[!redirects k-ary factorization system]] [[!redirects k-ary factorization systems]] [[!redirects k-ary factorisation system]] [[!redirects k-ary factorisation systems]] [[!redirects n-ary factorization system]] [[!redirects n-ary factorization systems]] [[!redirects n-ary factorisation system]] [[!redirects n-ary factorisation systems]] [[!redirects alpha-ary factorization system]] [[!redirects alpha-ary factorization systems]] [[!redirects alpha-ary factorisation system]] [[!redirects alpha-ary factorisation systems]] [[!redirects k-fold factorization system]] [[!redirects k-fold factorization systems]] [[!redirects k-fold factorisation system]] [[!redirects k-fold factorisation systems]] [[!redirects n-fold factorization system]] [[!redirects n-fold factorization systems]] [[!redirects n-fold factorisation system]] [[!redirects n-fold factorisation systems]] [[!redirects alpha-fold factorization system]] [[!redirects alpha-fold factorization systems]] [[!redirects alpha-fold factorisation system]] [[!redirects alpha-fold factorisation systems]] [[!redirects k-step factorization system]] [[!redirects k-step factorization systems]] [[!redirects k-step factorisation system]] [[!redirects k-step factorisation systems]] [[!redirects n-step factorization system]] [[!redirects n-step factorization systems]] [[!redirects n-step factorisation system]] [[!redirects n-step factorisation systems]] [[!redirects alpha-step factorization system]] [[!redirects alpha-step factorization systems]] [[!redirects alpha-step factorisation system]] [[!redirects alpha-step factorisation systems]] [[!redirects k-stage factorization system]] [[!redirects k-stage factorization systems]] [[!redirects k-stage factorisation system]] [[!redirects k-stage factorisation systems]] [[!redirects n-stage factorization system]] [[!redirects n-stage factorization systems]] [[!redirects n-stage factorisation system]] [[!redirects n-stage factorisation systems]] [[!redirects alpha-stage factorization system]] [[!redirects alpha-stage factorization systems]] [[!redirects alpha-stage factorisation system]] [[!redirects alpha-stage factorisation systems]] [[!redirects infinitary factorization system]] [[!redirects infinitary factorization systems]] \end{document}