\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{k-surjective functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{generalization_to_categories}{Generalization to $\infty$-categories}\dotfill \pageref*{generalization_to_categories} \linebreak \noindent\hyperlink{surjectivity}{$k$-Surjectivity}\dotfill \pageref*{surjectivity} \linebreak \noindent\hyperlink{Lifting}{In terms of lifting diagrams}\dotfill \pageref*{Lifting} \linebreak \noindent\hyperlink{weak_equivalences_acyclic_fibrations_and_hypercovers}{Weak equivalences, acyclic fibrations and hypercovers}\dotfill \pageref*{weak_equivalences_acyclic_fibrations_and_hypercovers} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{$k$-surjective functor} is the continuation of the sequence of notions \begin{itemize}% \item [[essentially surjective functor]] \item essentially surjective and [[full functor]] \item essentially surjective and [[full and faithful functor]] \end{itemize} from [[category theory]] to an infinite sequence of notions in [[higher category theory]]. Roughly, a functor $F : C \to D$ between [[∞-categories]] $C$ and $D$ is \emph{$k$-surjective} if for each boundary of a [[k-morphism]]s in $C$, each $k$-morphism between the image of that boundary in $D$ is in the image of $F$. \hypertarget{generalization_to_categories}{}\subsection*{{Generalization to $\infty$-categories}}\label{generalization_to_categories} \hypertarget{surjectivity}{}\subsubsection*{{$k$-Surjectivity}}\label{surjectivity} For the moment, this here describes the notion for \emph{globular} models of $\infty$-categories. See below for the simplicial reformulation. An $\omega$-functor $f : C \to D$ between $\infty$-[[infinity-category|categories]] is 0-surjective if $f_0 : C_0 \to D_0$ is an epimorphism. For $k \in \mathbb{N}$, $k \geq 1$ the functor is \emph{$k$-surjective} if the universal morphism \begin{displaymath} C_k \to P_k \end{displaymath} to the pullback $P_k$ in \begin{displaymath} \itexarray{ P_k &\to& D_k \\ \downarrow && \downarrow^{s \times t} \\ C_{k-1} \times C_{k-1} &\stackrel{F_{k-1} \times F_{k-1}}{\to}& D_{k-1} \times D_{k-1} } \end{displaymath} coming from the commutativity of the square \begin{displaymath} \itexarray{ C_k &\stackrel{f_{k}}{\to}& D_k \\ \downarrow^{s \times t} && \downarrow^{s \times t} \\ C_{k-1} \times C_{k-1} &\stackrel{F_{k-1} \times F_{k-1}}{\to}& D_{k-1} \times D_{k-1} } \end{displaymath} (which commutes due to the functoriality axioms of $f$) is an [[epimorphism]]. If you interpret $C_k$ and $P_k$ as sets and take `epimorphism' in a strict sense (the sense in [[Set]], a [[surjection]]), then you have a \textbf{strictly $k$-surjective functor}. But if you interpret $C_k$ and $P_k$ as $\infty$-categories or $\infty$-groupoids and take `epimorphism' in a weak sense (the [[homotopy limit|homotopy]] sense from $\infty$-[[infinity-Grpd|Grpd]]), then you have an \textbf{essentially $k$-surjective functor}; equivalently, project $C_k$ and $P_k$ to $\omega$-[[equivalence]]-classes before testing surjectivity. A functor is essentially $k$-surjective if and only if it is equivalent to some strictly $k$-surjective functor, so essential $k$-surjectivity is the non-[[evil]] notion. \begin{uprop} For $C$ and $D$ [[categories]] we have \begin{enumerate}% \item $f$ is (essentially) $0$-surjective $\Leftrightarrow$ $f$ is [[essentially surjective functor|(essentially) surjective on objects]]; \item $f$ is (essentially) $1$-surjective $\Leftrightarrow$ $f$ is [[full functor|full]]; \item $f$ is (essentially) $2$-surjective $\Leftrightarrow$ $f$ is [[faithful functor|faithful]]; \item $f$ is always $3$-surjective. \end{enumerate} \end{uprop} \hypertarget{Lifting}{}\subsubsection*{{In terms of lifting diagrams}}\label{Lifting} \begin{uprop} An $\omega$-functor $f : C \to D$ is $k$-surjective for $k \in \mathbb{N}$ precisely if it has the right [[weak factorization system|lifting property]] with respect to the inclusion $\partial G_{k} \to G_k$ of the boundary of the $k$-[[globe]] into the $k$-[[globe]]. \begin{displaymath} \itexarray{ \partial G_k &\to& C \\ \downarrow &{}^{\exists}\nearrow& \downarrow^f \\ G_k &\to& D } \,. \end{displaymath} \end{uprop} One recognizes the similarity to situation for [[geometric definition of higher category]]. A morphism $f : C \to D$ of [[simplicial set]]s is an acyclic fibration with respect to the [[model structure on simplicial sets]] if it all diagrams \begin{displaymath} \itexarray{ \partial \Delta[k] &\to& C \\ \downarrow && \downarrow^f \\ \Delta[k] &\to& D } \end{displaymath} have a lift \begin{displaymath} \itexarray{ \partial \Delta[k] &\to& C \\ \downarrow &\nearrow& \downarrow^f \\ \Delta[k] &\to& D } \end{displaymath} for all $k$, where now $\Delta[k]$ is the $k$-[[simplex]]. \hypertarget{weak_equivalences_acyclic_fibrations_and_hypercovers}{}\subsubsection*{{Weak equivalences, acyclic fibrations and hypercovers}}\label{weak_equivalences_acyclic_fibrations_and_hypercovers} With respect to the [[folk model structure]] on $\omega$-categories an $\omega$-functor is \begin{itemize}% \item an [[acyclic fibration]] if it is $k$-surjective for all $k \in \mathbb{N}$; \item a [[weak equivalence]] if it is essentially $k$-surjective for all $k \in \mathbb{N}$. See also [[equivalence of categories]]. \end{itemize} \hypertarget{remarks}{}\subsubsection*{{Remarks}}\label{remarks} All this has close analogs in other models of higher structures, in particular in the context of simplicial sets: an acyclic fibration in the standard [[model structure on simplicial sets]] is a morphism $X \to Y$ for which all diagrams \begin{displaymath} \itexarray{ \partial \Delta[n] &\to& X \\ \downarrow && \downarrow \\ \Delta[n] &\to& Y } \end{displaymath} have a lift \begin{displaymath} \itexarray{ \partial \Delta[n] &\to& X \\ \downarrow &\nearrow& \downarrow \\ \Delta[n] &\to& Y } \,. \end{displaymath} This is precisely in simplicial language the condition formulated above in globular language. \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} The general idea of $k$-surjectivity is described around \href{http://arxiv.org/PS_cache/math/pdf/0608/0608420v2.pdf#page=17}{definition 4} of \begin{itemize}% \item Baez-Shulman, [[Lectures on n-Categories and Cohomology]] (\href{http://arxiv.org/abs/math.CT/0608420}{arXiv}) \end{itemize} The concrete discussion in the context of [[strict omega-category|strict omega-categories]] is in \begin{itemize}% \item Yves Lafont, Francois M\'e{}tayer, Krzysztof Worytkiewicz, \emph{A folk model structure on $\omega$-cat} (\href{http://arxiv.org/abs/0712.0617}{arXiv}). \end{itemize} For the analogous discussion for simplicial sets see \begin{itemize}% \item [[model structure on simplicial sets]] \end{itemize} and references given there. [[!redirects k-surjectivity]] \end{document}