\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{kernel} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_a_pullback}{As a pullback}\dotfill \pageref*{as_a_pullback} \linebreak \noindent\hyperlink{as_an_equalizer}{As an equalizer}\dotfill \pageref*{as_an_equalizer} \linebreak \noindent\hyperlink{as_a_weighted_limit}{As a weighted limit}\dotfill \pageref*{as_a_weighted_limit} \linebreak \noindent\hyperlink{as_a_representing_object}{As a representing object}\dotfill \pageref*{as_a_representing_object} \linebreak \noindent\hyperlink{in_an_category}{In an $(\infty,1)$-category}\dotfill \pageref*{in_an_category} \linebreak \noindent\hyperlink{other_meanings}{Other meanings}\dotfill \pageref*{other_meanings} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{kernel} of a [[morphism]] is that part of its [[domain]] which is sent to [[zero]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are various definitions of the notion of kernel, depending on the properties and structures available in the ambient category. We list a few definitions and discuss (in parts) when they are equivalent. \hypertarget{as_a_pullback}{}\subsubsection*{{As a pullback}}\label{as_a_pullback} \begin{defn} \label{}\hypertarget{}{} In a [[category]] with an [[initial object]] $0$ and [[pullbacks]], the \textbf{kernel} $ker(f)$ of a [[morphism]] $f: A \to B$ is the [[pullback]] $ker(f) \to A$ along $f$ of the unique morphism $0 \to B$ \begin{displaymath} \itexarray{ ker(f) &\to& 0 \\ {}^{\mathllap{p}}\downarrow && \downarrow \\ A &\stackrel{f}{\to}& B } \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} More explicitly, this characterizes the object $ker(f)$ as [[generalized the|the]] object (unique up to unique [[isomorphism]]) that satisfies the following [[universal property]]: for every object $C$ and every morphism $h : C \to A$ such that $f\circ h = 0$ is the [[zero morphism]], there is a unique morphism $\phi : C \to ker(f)$ such that $h = p\circ \phi$. \end{remark} \hypertarget{as_an_equalizer}{}\subsubsection*{{As an equalizer}}\label{as_an_equalizer} \begin{defn} \label{}\hypertarget{}{} In a [[category]] with [[zero morphism]]s (meaning: [[enriched category|enriched]] over the [[category of pointed sets]]), [[generalized the|the]] \textbf{kernel} $ker(f)$ of a [[morphism]] $f : c \to d$ is, if it exists, the [[equalizer]] of $f$ and the zero morphism $0_{c,d}$. \end{defn} \hypertarget{as_a_weighted_limit}{}\subsubsection*{{As a weighted limit}}\label{as_a_weighted_limit} In any category enriched over pointed sets, the kernel of a morphism $f:c\to d$ is the universal morphism $k:a\to c$ such that $f \circ k$ is the basepoint. It is a [[weighted limit]] in the sense of [[enriched category theory]]. This applies in particular in any (pre)-[[additive category]]. This is a special case of the construction of [[generalized kernels]] in enriched categories. \hypertarget{as_a_representing_object}{}\subsubsection*{{As a representing object}}\label{as_a_representing_object} Let $Ab$ be the category of abelian groups. It is a category with kernels. In every $Ab$-enriched category $A$, for every morphism $f: X\to Y$ in $A$ there is a [[subfunctor]] \begin{displaymath} ker f : A^{op}\to Ab \end{displaymath} of the representable functor $hom(-,X)$, defined on objects by \begin{displaymath} (ker f)(Z) = ker(hom(Z,X)\to hom(Z,Y)), \end{displaymath} where $ker$ on the right-hand side is the kernel n the category of abelian groups. If the category is in fact preabelian, $ker f$ is also representable with representing object $Ker f$. One has to be careful with $Coker f$ which does not represent the functor naive $coker f$ defined as $(coker f)(Z) = coker(hom(Z,X)\to hom(Z,Y))$ in $Ab$, which is often not representable at all, even in the simple example of the category of abelian groups. Instead, as a colimit construction, one should \emph{co}represent another functor, namely, the covariant functor $Z\mapsto ker(hom(Y,Z) \to hom(X,Z))$ (which is a quotient of the corepresentable functor $hom(X,-)$). In short, $Coker f$ is defined by the double dualization using the kernel in $Ab$: $Coker f = (Ker f^{op})^{op}$. This is a particular case of the dualization involved in defining any [[colimit]] from its corresponding [[limit]]. \hypertarget{in_an_category}{}\subsubsection*{{In an $(\infty,1)$-category}}\label{in_an_category} The kernel of a morphism in an [[(∞,1)-category]] with $\infty$-categorical [[zero object]] is the [[homotopy pullback]] as in the pullback definition above: the [[homotopy fiber]]. See also [[stable (∞,1)-category]]. \hypertarget{other_meanings}{}\subsubsection*{{Other meanings}}\label{other_meanings} In some fields, the term `kernel' refers to an [[equivalence relation]] that category theorists would see as a [[kernel pair]]. This is especially important in fields such as [[monoid]] theory where both notions exist but are not equivalent (while in [[group]] theory they are equivalent). In [[ring]] theory, even when one assumes that rings have units preserved by ring homomorphisms, the traditional notion of kernel (an [[ideal]]) exists in the category of non-unital rings (and is not itself a unital ring in general). A purely category-theoretic theory of unital rings can be recovered either by using the kernel pair instead or (to fit better the usual language) moving to a category of [[modules]]. In [[universal algebra]], this may be handled in the framework of [[Malcev variety|Mal?cev varieties]]. Kashiwara-Schapira, following the terminology of EGA, uses kernel as a synonym of equalizer (and co-kernel of co-equalizer). \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \begin{prop} \label{}\hypertarget{}{} Let $C$ be a category with [[pullback]]s and [[zero object]]. In $C$, the kernel of a kernel is 0. \end{prop} \begin{proof} By the we have that the total square \begin{displaymath} \itexarray{ ker ker f &\to& ker f &\to& 0 \\ \downarrow && \downarrow && \downarrow \\ 0 &\to& c &\stackrel{f}{\to}& d } \end{displaymath} is a pullback. Since $0 \to c$ is a [[monomorphism]] and the pullback of a monomorphism along itself is the domain of the monomorphis, we have $ker ker f \simeq 0$. \end{proof} \begin{remark} \label{}\hypertarget{}{} This statement crucially fails to be true in [[higher category theory]]. There, the kernel of a kernel is the based [[loop space object]] of $d$. For this reason where one has [[short exact sequence]]s in 1-category theory, there are instead long [[fiber sequence]]s in higher category theory. \end{remark} \begin{prop} \label{}\hypertarget{}{} In a category $C$ with [[pullback]]s and [[pushout]]s and [[zero object]], kernel and [[cokernel]] form a pair of [[adjoint functor]]s on the [[arrow category|arrow categories]] \begin{displaymath} (coker \dashv ker) : Arr(C) \stackrel{\overset{coker}{\leftarrow}}{\underset{ker}{\to}} Arr(C) \,. \end{displaymath} \end{prop} \begin{proof} We check the hom-isomorphism of a pair of [[adjoint functor]]s. An element in the [[hom-set]] $Arr_C(g,ker f)$ is a [[diagram]] \begin{displaymath} \itexarray{ c &\to& ker(f) &\to& 0 \\ {}^{\mathllap{g}}\downarrow && \downarrow && \downarrow \\ d &\to& a &\stackrel{f}{\to}& b } \,. \end{displaymath} By the universal property of the [[pullback]], this is the same as a diagram \begin{displaymath} \itexarray{ c &\to& &\to& 0 \\ {}^{\mathllap{g}}\downarrow && && \downarrow \\ d &\to& a &\stackrel{f}{\to}& b } \,. \end{displaymath} By the dual reasoning, an element in $Arr_C(coker g, f)$ is a diagram \begin{displaymath} \itexarray{ c &\stackrel{g}{\to}& d &\to& a \\ \downarrow && \downarrow && \downarrow^{\mathrlap{f}} \\ 0 &\to& coker g &\to& b } \,. \end{displaymath} By the universal property of the [[pushout]] this is equivalently a diagram \begin{displaymath} \itexarray{ c &\stackrel{g}{\to}& d &\to& a \\ \downarrow && && \downarrow^{\mathrlap{f}} \\ 0 &\to& &\to& b } \,. \end{displaymath} \end{proof} (This also follows from the general theory of [[generalized kernels]].) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} In the [[category]] [[Ab]] of abelian groups, the kernel of a [[group homomorphism]] $f : A \to B$ is the [[subgroup]] of $A$ on the set $f^{-1}(0)$ of elements of $A$ that are sent to the zero-element of $B$. \end{example} \begin{example} \label{}\hypertarget{}{} More generally, for $R$ any [[ring]], this is true in $R$[[Mod]]: the kernel of a morphism of modules is the [[preimage]] of the zero-element at the level of the underlying sets, equipped with the unique sub-module structure on that set. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{kernel}, [[fiber]], [[generalized kernel]] \item [[homotopy fiber]] \item [[cokernel]] \end{itemize} [[!redirects kernels]] \end{document}