\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{lagrangian submanifold} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples_in_higher_differential_geometry}{Examples in higher differential geometry}\dotfill \pageref*{examples_in_higher_differential_geometry} \linebreak \noindent\hyperlink{OfAPoissonLieAlgebroid}{Of a Poisson Lie algebroid}\dotfill \pageref*{OfAPoissonLieAlgebroid} \linebreak \noindent\hyperlink{OfACourantLie2Algebroid}{Of a Courant Lie 2-algebroid}\dotfill \pageref*{OfACourantLie2Algebroid} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Lagrangian submanifold} of a [[symplectic manifold]] is a submanifold which is a maximal [[isotropic submanifold]], hence a [[submanifold]] on which the [[symplectic form]] vanishes, and which is maximal with this property. In the archetypical example of an even dimensional [[Cartesian space]] $X = \mathbb{R}^{2n}$ equipped with its canonical symplectic form $\omega = \sum_{i = 1}^n d q_i \wedge d p^i$, standard Lagrangian submanifolds are the submanifolds $\mathbb{R}^n \hookrightarrow \mathbb{R}^{2n}$ of fixed values of the $\{q_i\}_{i = 1}^n$ [[coordinates]]. Indeed \emph{locally}, every Lagrangian submanifold looks like this. Lagrangian submanifolds are of central importance in [[symplectic geometry]] where they constitute [[leaves]] of [[real polarizations]] and are closely related to [[quantum states]]: If one thinks of a [[symplectic manifold]] as a [[phase space]] of a [[physical system]], then a Lagrangian submanifold may be thought of (locally) as the space of ``all [[canonical momenta]] (= parameterization of a [[leaf]]) at fixed [[canonical coordinate]] (= parameterization of [[leaf space]])''. A Lagrangian submanifold equipped with a [[half-density]] is a model for a [[state]] of the physical system in [[semiclassical approximation]] (see e.g. \hyperlink{BatesWeinstein}{Bates-Weinstein, p. 14}). A [[quantum state]] given by a [[wave function]] (see there) is a refinement of this concept. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A (\textbf{Lagrangean} or) \textbf{lagrangian submanifold} of a [[symplectic manifold]] $(X,\omega)$ is a [[submanifold]] $L \hookrightarrow X$ such that the following equivalent conditions hold \begin{itemize}% \item at each point $\ell \in L the$[[tangent space]] $T_\ell L \hookrightarrow T_\ell X$ is a [[Lagrangian subspace]] (hence a simultanously [[isotropic subspace]] and [[cosisotropic subspace]]) of $T_\ell X$ equiiped with the [[symplectic form]] $\omega_x$; \item $L \hookrightarrow X$ is a maximal [[isotropic submanifold]]. \end{itemize} \end{defn} \begin{remark} \label{LambdaStructures}\hypertarget{LambdaStructures}{} More generally one can consider Lagrangian submanifolds of symplectic structures in [[higher geometry]], such as [[symplectic Lie n-algebroids]] equipped with their canonical [[invariant polynomials]], thought of as [[dg-manifolds]] (via their [[Chevalley-Eilenberg algebra]]) and equipped with graded symplectic forms. Lagrangian dg-submanifolds of such symplectic dg-manifolds have been called \textbf{$\Lambda$-structures} in (\hyperlink{Severa}{\v{S}evera, section 4}). \end{remark} \hypertarget{examples_in_higher_differential_geometry}{}\subsection*{{Examples in higher differential geometry}}\label{examples_in_higher_differential_geometry} We discuss classes of examples of Lagrangian dg-submanifolds, remark \ref{LambdaStructures}, of [[symplectic Lie n-algebroids]]. \hypertarget{OfAPoissonLieAlgebroid}{}\subsubsection*{{Of a Poisson Lie algebroid}}\label{OfAPoissonLieAlgebroid} A [[Poisson Lie algebroid]] $\mathfrak{P}$ is a [[symplectic Lie n-algebroid]] for $n = 1$. Regarding its [[Chevalley-Eilenberg algebra]] as the algebra of functions on a [[dg-manifold]], that dg-manifold carries a graded [[symplectic form]] $\omega$. One can then say \begin{defn} \label{ForPoissonLieAlgebroidyByLagrangianFoliation}\hypertarget{ForPoissonLieAlgebroidyByLagrangianFoliation}{} A dg-[[Lagrangian submanifold]] of $(\mathfrak{P}, \omega)$ is a Lagrangian dg-submanifold, also called a \textbf{$\Lambda$-structure}. (\hyperlink{Severa}{\v{S}evera, section 4}). \end{defn} \begin{remark} \label{}\hypertarget{}{} A [[foliation]] by such [[leaves]] is a Lagrangian \emph{[[foliation of a Lie algebroid]]}. \end{remark} \begin{prop} \label{}\hypertarget{}{} For $(X, \pi)$ the [[Poisson manifold]] underlying a [[Poisson Lie algebroid]] $(\mathfrak{P}, \omega)$, a dg-Lagrangian submanifold of $(\mathfrak{P}, \omega)$ corresponds to a [[coisotropic submanifold]] of $(X, \pi)$. \end{prop} (\hyperlink{Severa}{\v{S}evera, section 4}) \begin{proof} As a [[vector bundle]] with bracket structure, the [[Poisson Lie algebroid]] $\mathfrak{P}$ is \begin{displaymath} \itexarray{ T^* X &&\stackrel{\pi}{\to}&& T X \\ & \searrow && \swarrow \\ && X } \end{displaymath} where the horizontal morphism is given by contraction/pairing with the [[Poisson tensor]]. It is sufficient to consider this locally over a [[coordinate chart]] and hence we set without essential restriction of generality $X = \mathbb{R}^n$ with the [[invariant polynomial]]/graded [[symplectic form]] on $CE(\mathfrak{P})$ being \begin{displaymath} \omega = \mathbf{d} x^i \wedge \mathbf{d} p_i \,, \end{displaymath} where the $\{q_i\}_{i = 1}^n$ are the canonical [[coordinates]] on $\mathbb{R}^n$ and where the $\{p_i\}$ are the canonical coordinates on $T^*_x \mathbb{R}^n \simeq \mathbb{R}^n$, regarded as being in degree 1. Consider then a sub-Lie algebroid of $\mathfrak{P}$ over a [[submanifold]] $S \hookrightarrow \mathbb{R}^n$. That the corresponding subbundle \begin{displaymath} \itexarray{ E &\hookrightarrow& T^* X \\ \downarrow && \downarrow \\ S &\hookrightarrow & X } \end{displaymath} over $S$ is [[Lagrangian subspace|Lagrangian]] with respect to the above $\omega$ means that $E$ consists of precisely those [[cotangent vectors]] to $X$ which vanish when evaluated on [[tangent vectors]] of $S$. Hence \begin{displaymath} E = N^* S \end{displaymath} is the [[conormal bundle]] to $S \hookrightarrow X$. The inclusion $N^* S \hookrightarrow T^*_S X$ of vector bundles is an inclusion of [[Lie algebroids]] over $S$ precisely if the [[anchor map]] restricts to an anchor on $S$, hence that contraction with the Poisson tensor restricted to conormal vectors of $S$ lands in tangent vectors of $S$: \begin{displaymath} \pi(N^* S) \subset T S \,. \end{displaymath} This is the standard definition for what it means for $S$ to be a [[coisotropic submanifold]]. \end{proof} \begin{remark} \label{}\hypertarget{}{} The dg-Lagrangian submanifolds also correspond to [[branes]] in the [[Poisson sigma-model]] (see there) on $(\mathfrak{P}, \omega)$. \end{remark} \hypertarget{OfACourantLie2Algebroid}{}\subsubsection*{{Of a Courant Lie 2-algebroid}}\label{OfACourantLie2Algebroid} A [[Courant Lie algebroid]] $\mathfrak{C}$ is a [[symplectic Lie n-algebroid]] for $n = 2$. Regarding its [[Chevalley-Eilenberg algebra]] as the algebra of functions on a [[dg-manifold]], that dg-manifold carries a graded [[symplectic form]] $\omega$. One can then say \begin{defn} \label{ForPoissonLieAlgebroidyByLagrangianFoliation}\hypertarget{ForPoissonLieAlgebroidyByLagrangianFoliation}{} A dg-[[Lagrangian submanifold]] of $(\mathfrak{C}, \omega)$ is also called a \textbf{$\Lambda$-structure}. (\hyperlink{Severa}{\v{S}evera, section 4}). Hence we might say \textbf{real polarization} of $(\mathfrak{C}, \omega)$ is a foliation by dg-Lagrangian submanifolds. \end{defn} \begin{prop} \label{}\hypertarget{}{} The dg-Lagrangian submanifolds of a Courant Lie 2-algebroid $(\mathfrak{C}, \omega)$ correspond to [[Dirac structures]] on $(\mathfrak{C}, \omega)$. \end{prop} (\hyperlink{Severa}{\v{S}evera, section 4}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[special Lagrangian submanifold]] \item [[Lagrangian subspace]], [[Lagrangian Grassmannian]] \item [[Lagrangian correspondence]], [[prequantized Lagrangian correspondence]] \item [[Lagrangian cobordism]] \item [[Lagrangian subspace]] \item [[isotropic submanifold]] \item [[polarization]] \item [[Legendrean submanifold]] \end{itemize} [[!include (co)isotropic subspaces - table]] [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The concept of lagrangian submanifold has been defined/named in \begin{itemize}% \item [[Victor Maslov]], \emph{Perturbation Theory and Asymptotic Methods} (MSU Publ., Moscow, 1965; English translation: Mir, Moscow, 1965). \end{itemize} An introduction with an eye towards [[geometric quantization]] is for instance in \begin{itemize}% \item Sean Bates, [[Alan Weinstein]], \emph{Lectures on the geometry of quantization}, \href{http://www.math.berkeley.edu/~alanw/GofQ.pdf}{pdf} \end{itemize} (pages 10 and onward and then section 4.3). Lagrangian submanfolds of symplectic [[dg-manifolds]] are called ``$\Lambda$-structures'' in \begin{itemize}% \item [[Pavol Ĺ evera]], \emph{Some title containing the words ``homotopy'' and ``symplectic'', e.g. this one} (\href{http://arxiv.org/abs/math/0105080}{arXiv:0105080}) \end{itemize} [[!redirects lagrangian submanifold]] [[!redirects lagrangian submanifolds]] [[!redirects Lagrangian submanifold]] [[!redirects Lagrangian submanifolds]] [[!redirects lagrangean submanifold]] [[!redirects lagrangean submanifolds]] [[!redirects Lagrangean submanifold]] [[!redirects Lagrangean submanifolds]] [[!redirects lagrangian manifold]] [[!redirects lagrangian manifolds]] [[!redirects Lagrangian manifold]] [[!redirects Lagrangian manifolds]] [[!redirects lagrangean manifold]] [[!redirects lagrangean manifolds]] [[!redirects Lagrangean manifold]] [[!redirects Lagrangean manifolds]] [[!redirects Lagrangian dg-submanifold]] [[!redirects Lagrangian dg-submanifolds]] [[!redirects dg-Lagrangian submanifold]] [[!redirects dg-Lagrangian submanifolds]] \end{document}