\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{lax morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{lax_morphisms}{}\section*{{Lax morphisms}}\label{lax_morphisms} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_algebras_of_2monads}{For algebras of 2-monads}\dotfill \pageref*{for_algebras_of_2monads} \linebreak \noindent\hyperlink{for_coalgebras_of_2comonads}{For coalgebras of 2-comonads}\dotfill \pageref*{for_coalgebras_of_2comonads} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{categories_of_lax_morphisms}{Categories of lax morphisms}\dotfill \pageref*{categories_of_lax_morphisms} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In general, if $A$ and $B$ are [[categories]] (or, more generally, any category-like things, such as [[objects]] of some [[2-category]]) equipped with [[algebraic structure]], a \emph{lax morphism} $f\colon A\to B$ is one which ``preserves'' the algebraic structure only up to a not-necessarily invertible transformation. Of course, this transformation goes in one particular direction; a \emph{colax morphism} is one where the transformation goes in the other direction. The case of 2-monads, below, provides an almost universally applicable way to decide which direction is ``lax'' and which is ``colax''. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_algebras_of_2monads}{}\subsubsection*{{For algebras of 2-monads}}\label{for_algebras_of_2monads} Let $T$ be a [[2-monad]] on a 2-category $K$, and let $A$ and $B$ be (strict, pseudo, or even lax or colax) $T$-algebras. A \textbf{lax $T$-morphism} $f\colon A\to B$ is a morphism in $K$ together with a [[2-cell]] \begin{displaymath} \itexarray{ T A & \overset{T f}{\to} & T B\\ ^{a} \downarrow & \swArrow & \downarrow^{b}\\ A & \underset{f}{\to} & B} \end{displaymath} satisfying some axioms. If the 2-cell goes in the other direction, then we say $f$ is a \textbf{colax $T$-morphism} (or \textbf{oplax $T$-morphism}). Equivalently, a colax $T$-morphism is a lax $T^{co}$-morphism, where $T^{co}$ is the induced 2-monad on the 2-cell dual $K^{co}$ (see [[opposite 2-category]]). If the 2-cell is invertible, we call $f$ a \textbf{pseudo} or \textbf{strong} $T$-morphism. \hypertarget{for_coalgebras_of_2comonads}{}\subsubsection*{{For coalgebras of 2-comonads}}\label{for_coalgebras_of_2comonads} Let $W$ be a 2-comonad on $K$, i.e. a 2-monad on the 1-cell dual $K^{op}$, and let $C$ and $D$ be $W$-coalgebras. A \textbf{lax $W$-morphism} $f\colon C\to D$ is a morphism in $K$ together with a 2-cell \begin{displaymath} \itexarray{ C & \overset{T f}{\to} & D\\ ^{c} \downarrow & \swArrow & \downarrow^{d}\\ W C & \underset{f}{\to} & W D} \end{displaymath} satisfying some axioms. Note that a lax morphism of algebras for the 2-comonad $W$ is a \emph{colax} morphism of algebras for the 2-monad $W^{op}$. The reason we choose to call this direction for coalgebras ``lax'' is that if $T$ is a 2-monad with a right [[adjoint functor|adjoint]] $T^*$, then $T^*$ automatically becomes a 2-comonad such that $T^*$-coalgebras are the same as $T$-algebras, and with the above definition, lax $T$-morphisms coincide with lax $T^*$-morphisms. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A [[lax monoidal functor]] is a lax morphism for the 2-monad on [[Cat]] whose algebras are [[monoidal categories]]. Similarly, an [[oplax monoidal functor]] is a colax morphism for this 2-monad. \item A [[lax natural transformation]] between [[2-functors]] $C\to D$ is a lax morphism for the 2-monad on $[ob(C),D]$ whose algebras are 2-functors (which exists if $D$ is cocomplete and $C$ is small). Similarly, an oplax natural transformation is a colax morphism for this 2-monad. If $D$ is also complete, then this 2-monad has a right adjoint, which then as usual becomes a 2-comonad whose coalgebras are also 2-functors. The above conventions for lax morphisms between coalgebras mean that a lax natural transformation is unambiguously ``lax'' rather than ``colax'', whether we regard the 2-functors as algebras for a 2-monad or coalgebras for a 2-comonad. Some authors have tried to change the traditional meanings of ``lax'' and ``colax'' in this case, but the general framework of 2-monads gives a good argument for keeping it this way (even if in this particular case, oplax transformations are more common or useful). \item A [[lax functor]] between 2-categories is a lax morphism for the 2-monad on Cat-graphs whose algebras are 2-categories. \item A [[lax algebra for a 2-monad]] $T$ is a lax morphism $T\to \langle A,A\rangle$ for the 2-monad whose algebras are 2-monads, where $\langle A,A\rangle$ is the [[codensity monad]] of the object $A$. \item If $T$ is a [[lax-idempotent 2-monad]], then (by definition) \emph{every} morphism in the underlying 2-category $K$ between (the objects underlying) $T$-algebras has a unique structure of lax $T$-morphism. For instance, every functor between categories with (some class of) [[colimits]] is a lax morphism for the 2-monad which assigns those colimits; the unique lax structure map is the canonical comparison $colim (F\circ D) \to F(colim D)$. Such a morphism is strong/pseudo exactly when it preserves the colimits in question. \item For [[probability monads]] on a [[locally posetal 2-category]], such as the [[Radon monad\#the\_ordered\_case|ordered Radon monad]], the lax morphisms of algebras corresponds to [[concave maps]] or a suitable generalization thereof. \end{itemize} \hypertarget{categories_of_lax_morphisms}{}\subsection*{{Categories of lax morphisms}}\label{categories_of_lax_morphisms} For any 2-monad $T$, there are a 2-categories: \begin{itemize}% \item $T Alg_l$ of $T$-algebras and lax morphisms \item $T Alg_c$ of $T$-algebras and colax morphisms \item $T Alg_p$ (frequently written just $T Alg$) of $T$-algebras and pseudo morphisms \item (if $T$ is strict) $T Alg_s$ of $T$-algebras and strict morphisms \end{itemize} We have obvious 2-functors \begin{displaymath} \itexarray{ & & & & T Alg_l \\ & & & \nearrow\\ T Alg_s & \to & T Alg_p\\ & & & \searrow\\ & & & & T Alg_c } \end{displaymath} which are [[bijective on objects functor|bijective on objects]], [[faithful functor|faithful]] on 1-cells, and [[locally fully faithful 2-functor|locally fully faithful]]. Therefore, we can also assemble a number of [[F-categories]] of $T$-algebras and any suitable pair of types of $T$-morphism: strict+pseudo, strict+lax, strict+colax, pseudo+lax, or pseudo+colax. If we want to consider both lax and colax $T$-morphisms together, the natural structure is a [[double category]]: there is a straightforward definition of the squares in a double category whose vertical arrows are colax $T$-morphisms and whose horizontal arrows are lax ones. We could then, if we wish, add some ``F-ness'' to incorporate pseudo and/or strict morphisms as well. The 2-category $T Alg_p$ is fairly well-behaved; for strict $T$, it admits all strict [[PIE-limits]] (if the base 2-category does), and therefore all [[2-limits]] (i.e. bilimits). When $T$ is [[accessible functor|accessible]], $T Alg_p$ admits all 2-colimits as well (but not, in general, many strict 2-colimits). However, the 2-categories $T Alg_l$ and $T Alg_c$ are not so well-behaved; they do not have many limits or colimits. But once we enhance them to [[F-categories]], they admit all [[rigged limits]]. All three 2-categories also admit [[lax morphism classifier|morphism classifiers]]; that is, the inclusions $T Alg_s \to T Alg_*$ have left 2-adjoints. \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[2-monad]] \item [[lax morphism classifier]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Blackwell, [[Max Kelly|Kelly]], [[John Power|Power]]. ``2-dimensional monad theory'' \end{itemize} [[!redirects lax morphisms]] [[!redirects colax morphism]] [[!redirects colax morphisms]] [[!redirects oplax morphism]] [[!redirects oplax morphisms]] [[!redirects pseudo morphism]] [[!redirects pseudo morphisms]] \end{document}