\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{lax-idempotent 2-monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{equivalent_conditions}{Equivalent conditions}\dotfill \pageref*{equivalent_conditions} \linebreak \noindent\hyperlink{algebras}{Algebras}\dotfill \pageref*{algebras} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A lax-idempotent 2-monad encodes a certain kind of [[stuff, structure, property|property-like structure]] that a [[category]], or more generally an [[object]] of a [[2-category]], can carry. The archetypal examples are given by [[2-monads]] $T$ on [[Cat]] that take a [[category]] $C$ to the [[free cocompletion]] $T C$ of $C$ under a given class of [[colimits]] -- then an [[algebra of a monad|algebra]] $T C \to C$ is a category $C$ with all such colimits, which are of course essentially unique. Moreover, given thus-cocomplete categories $C$ and $D$, a functor $F \colon C \to D$, and a diagram $S$ in $C$, there is a unique arrow $colim T F S \to F(colim S)$ given by the universal property of the colimit. It is this property that lax-idempotence generalizes. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[2-monad]] $T$ on a [[2-category]] $K$ is called \textbf{lax-idempotent} if given any two (strict) $T$-algebras $a \colon T A \to A$, $b \colon T B \to B$ and a morphism $f \colon A \to B$, there exists a unique 2-cell $\bar f \colon b \circ T f \Rightarrow f \circ a$ making $(f,\bar f)$ a lax morphism of $T$-algebras: \begin{displaymath} \itexarray{ T A & \overset{T f}{\to} & T B \\ a \downarrow & \swArrow \bar f & \downarrow b \\ A & \underset{f}{\to} & B } \end{displaymath} Dually, a 2-monad $T$ is called \textbf{colax-idempotent} if $f \colon A \to B$ gives rise to a colax $T$-morphism $(f,\tilde f)$: \begin{displaymath} \itexarray{ T A & \overset{T f}{\to} & T B \\ a \downarrow & \neArrow \tilde f & \downarrow b \\ A & \underset{f}{\to} & B } \end{displaymath} Lax-idempotent monads are also called \textbf{Kock--Z\"o{}berlein} or \textbf{KZ} monads. \hypertarget{equivalent_conditions}{}\subsubsection*{{Equivalent conditions}}\label{equivalent_conditions} \begin{theorem} \label{AlgebraAdjoint}\hypertarget{AlgebraAdjoint}{} A 2-monad $T$ as above is lax-idempotent if and only if for any $T$-algebra $a \colon T A \to A$ there is a 2-cell $\theta_a \colon 1 \Rightarrow \eta A \circ a$ such that $(\theta_a ,1_{1_A})$ are the unit and counit of an [[adjunction]] $a \dashv \eta_A$. \end{theorem} \begin{proof} \textbf{(Adapted from Kelly--Lack)}. The multiplication $\mu_A \colon T^2 A \to T A$ is a $T$-algebra on $T A$, and $\eta_A \colon A \to T A$ is a morphism from the underlying object of $a$ to that of $\mu_A$. So there is a unique $\bar\eta_A \colon \mu_A \circ T \eta_A = 1_{T A} \Rightarrow \eta_A \circ a$ making $\eta_A$ into a lax $T$-morphism. Set $\theta_a = \bar\eta_A$. The [[adjunction|triangle equalities]] then require that: \begin{enumerate}% \item $a \bar\eta_A \colon a \Rightarrow a \circ \eta_A \circ a = a$ is equal to $1_a$. The composite $a \circ \bar\eta_A$ makes $a \circ \eta_A$ a lax $T$-morphism from $a$ to $a$ (paste $\bar\eta_A$ with the identity square $a \circ \mu_A = a \circ T a$). But $a \circ \eta_A = 1_A$, and $1_a$ also makes this into a lax $T$-morphism, so by uniqueness $a \bar\eta_A = 1_a$. \item $\bar\eta_A \eta_A \colon \eta_A \Rightarrow \eta_A \circ a \circ \eta_A = \eta_A$ is equal to $1_{\eta_A}$. But this follows directly from the unit coherence condition for the lax $T$-morphism $\bar\eta_A$. \end{enumerate} Conversely, suppose $\theta_a$, algebras $a,b$ on $A,B$ and $f \colon A \to B$ are given. Take $\bar f$ to be the [[mate]] of $1_f \colon b \circ T f \circ \eta A = f \Rightarrow f$ with respect to the adjunctions $a \dashv \eta_A$ and $1 \dashv 1$, which is given in this case by pasting with $\theta_a$, so we have that $\bar f = b \circ T f \circ \theta_a$. The mate of $\bar f$ in turn is given by $\bar f \circ \eta_A$, which because mates correspond bijectively is equal to $1_f$. So $\bar f$ satisfies the unit condition. Consider the diagrams expressing the multiplication condition: because $a \circ \mu_A = a \circ T a$ (and the same for $b$), their boundaries are equal, so we have 2-cells $\alpha, \beta \colon b \circ T b \circ T^2 f \Rightarrow f \circ a \circ T a$. Their mates under the adjunction $(T\theta_a, 1) \colon T a \dashv T\eta_A$ are given by pasting with $T \eta_A$. One is $\bar f$ pasted with $T \bar f \circ T \eta_A = T(f \circ \eta_A) = T 1_f = 1_{T f}$, and the other is given by composing $T \eta_A$ with the identity $\mu_B \circ T^2 f = T f \circ \mu_A$ (and then pasting with $\bar f$), but because $\mu_A \circ T \eta_A = 1_{T A}$ this is also equal to $1_{T f}$. The two original 2-cells are hence equal, because their mates are equal, and so $\bar f$ is indeed a lax $T$-morphism. \end{proof} Since $T$`s multiplication $\mu$ makes $T$ itself into a (generalized) $T$-algebra, the above implies (and in fact is implied by) the requirement that there exist a [[modification]] $\ell \colon 1_{T^2} \to \eta T \circ \mu$ making $(\ell,1) \colon \mu \dashv \eta T$. Conversely, given an algebra $a \colon T A \to A$, the 2-cell $\theta_a$ is given by $T a \circ \ell_A \circ T \eta_A$. A different but equivalent condition is that there be a modification $d \colon T \eta \to \eta T$ such that $d \eta = 1$ and $\mu d = 1$; and given $\ell$ as above, $d$ is given by $\ell \circ T \eta$. These various conditions can also be regarded as ways to say that the [[Eilenberg-Moore category|Eilenberg-Moore adjunction]] for $T$ is a [[lax-idempotent 2-adjunction]]. Thus, $T$ is a lax-idempotent 2-monad exactly when this 2-adjunction is lax-idempotent, and therefore also just when it is the 2-monad induced by \emph{some} lax-idempotent 2-adjunction. Dually, for $T$ to be colax-idempotent, it is necessary and sufficient that any of the following hold. \begin{itemize}% \item For any $T$-algebra $a \colon T A \to A$ there is a 2-cell $\zeta_a \colon \eta_A \circ a \Rightarrow 1$ such that $(1,\zeta_a) \colon \eta_A \dashv a$. \item There is a modification $m \colon \mu \circ \eta T \to 1$ making $(1,m) \colon \eta T \dashv \mu$. \item There is a modification $e \colon \eta T \to T\eta$ such that $e\eta = 1$ and $\mu e = 1$. \end{itemize} \hypertarget{algebras}{}\subsection*{{Algebras}}\label{algebras} Theorem \ref{AlgebraAdjoint} gives a necessary condition for an object $A$ to admit a $T$-algebra structure, namely that $\eta_A : A \to T A$ admit a left adjoint with identity counit. In the case of pseudo algebras, this necessary condition is also sufficient. \begin{theorem} \label{PseudoAlgebras}\hypertarget{PseudoAlgebras}{} To give a pseudo $T$-algebra structure on an object $A$ is equivalently to give a left adjoint to $\eta_A : A\to T A$ with invertible counit. \end{theorem} In particular, an object admits at most one pseudo $T$-algebra structure, up to unique isomorphism. Thus, $T$-algebra structure is [[property-like structure]]. In many cases it is interesting to consider the pseudo $T$-algebras for which the algebra structure $T A \to A$ has a further left adjoint, forming an [[adjoint triple]]. Algebras of this sort are sometimes called [[continuous algebras]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} As mentioned above, the standard examples of lax-idempotent 2-monads are those on $Cat$ whose algebras are categories with all colimits of a specified class. In this case, the 2-monad is a [[free cocompletion]] operation. Dually, there are colax-idempotent 2-monads which adjoin limits of a specified class. A converse is given by (\hyperlink{PowerCattaniWinskel}{PowerCattaniWinskel}), who show that a 2-monad is a monad for free cocompletions if and only if it is lax-idempotent and the unit $\eta$ is dense (plus a coherence condition). Another important example of a colax-idempotent monad is the monad on $Cat/B$ that takes $p \colon E \to B$ to the projection $B/p \to p$ out of the [[comma category]]. The algebras for this monad are [[Grothendieck fibrations]] over $B$; see also [[fibration in a 2-category]]. The monad $p \mapsto p/B$ is lax-idempotent, and its algebras are opfibrations. This latter is actually a special case of a general situation. If $T$ is a (2-)monad relative to which one can define [[generalized multicategories]], then often it induces a lax-idempotent 2-monad $\tilde{T}$ on the 2-category of such generalized multicategories (aka ``virtual $T$-algebras''), such that (pseudo) $\tilde{T}$-algebras are equivalent to (pseudo) $T$-algebras. When $T$ is the 2-monad whose algebras are strict 2-functors $B\to Cat$ and whose pseudo algebras are pseudofunctors $B\to Cat$, then a virtual $T$-algebra is a category over $B$, and it is a pseudo $\tilde{T}$-algebra just when it is an opfibration. Similarly, there is a lax-idempotent 2-monad on the 2-category of [[multicategories]] whose pseudo algebras are [[monoidal categories]], and so on. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item [[pseudo-distributive laws]] involving lax-idempotent 2-monads have an especially nice form; see \hyperlink{MarmolejoDL}{(Marmolejo)} and \hyperlink{WalkerDL}{(Walker)}. \item For ordinary 1-monads there exists a presentation due to Manes as ``Kleisli triples'' with primary data a family of unit morphisms and lifts avoiding the iteration of the endofunctor. A similar presentation exists for lax-idempotent 2-monads as shown in Marmolejo-Wood (\hyperlink{MW12}{2012}). It is shown then in Walker \hyperlink{WalkerYS}{(2017)} that provided the units of this presentation are fully faithful (a reflection of the fully-faithfulness of the Yoneda embedding) (almost) all the axioms of a [[Yoneda structure]] are satisfied. In cases where size plays no role like e.g. the ideal completion of posets the two concepts coincide. For further details see at [[Yoneda structure]] or Walker \hyperlink{WalkerYS}{(2017)}. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[idempotent monad]] \item [[2-monad]] \item [[stuff, structure, property]] \item [[property-like structure]] \item [[continuous algebra]] \item [[free cocompletion]] \item [[lax-idempotent 2-adjunction]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Classical references are \begin{itemize}% \item [[Max Kelly]], [[Steve Lack]], \emph{On property-like structures}, TAC 3(9), 1997. (\href{http://www.tac.mta.ca/tac/volumes/1997/n9/3-09abs.html}{abstract}) \item [[Anders Kock]], \emph{Monads for which structures are adjoint to units} , Aarhus Preprint 1972/73 No. 35. (\href{http://home.imf.au.dk/kock/msau1.PDF}{pdf}) \item [[Anders Kock]], \emph{Monads for which structures are adjoint to units}, JPAA 104:41--59, 1995. \item [[Ross Street]], \emph{Fibrations in Bicategories} , Cah. Top. Géom. Diff. \textbf{XXI} no.2 (1980). (\href{http://www.numdam.org/item?id=CTGDC_1980__21_2_111_0}{numdam}) \item Volker Zöberlein, \emph{Doctrines on 2-categories} , Math. Zeitschrift \textbf{148} (1976) pp.267-279. (\href{https://gdz.sub.uni-goettingen.de/id/PPN266833020_0148?tify={%22pages%22:[273],%22view%22:%22info%22}}{gdz}) \end{itemize} ``Textbook'' accounts of the concept can be found in \begin{itemize}% \item [[Peter Johnstone]], \emph{Sketches of an elephant vol.1} , Oxford UP 2004. (B1.1.11, pp.250-54) \item [[Marta Bunge]], [[Jonathon Funk]], \emph{Singular coverings of Toposes} , Springer Heidelberg 2006. (pp.79ff) \end{itemize} Special facets of the concept are studied in \begin{itemize}% \item [[Marta Bunge]], \emph{Tightly Bounded Completions} , TAC \textbf{28} no.8 (2013) pp.213-240. (\href{http://tac.mta.ca/tac/volumes/28/8/28-8abs.html}{abstract}) \item [[Marta Bunge]], [[Jonathon Funk]], \emph{On a bicomma object condition for KZ-doctrines} , JPAA \textbf{143} (1999) pp.69-105. \item A. J. Power, G. L. Cattani, G. Winskel, \emph{A representation result for free cocompletions}, JPAA 151:273--286, 2000 \end{itemize} Their distributive laws come into focus in \begin{itemize}% \item Francisco Marmolejo, \emph{Distributive laws for pseudomonads}, \href{http://tac.mta.ca/tac/volumes/1999/n5/5-05abs.html}{TAC} \end{itemize} \begin{itemize}% \item Francisco Marmolejo, [[Richard J. Wood]], \emph{Kan extensions and lax idempotent pseudomonads} , TAC \textbf{26} no.1 (2012) pp.1-19. (\href{http://www.tac.mta.ca/tac/volumes/26/1/26-01abs.html}{abstract}) \item Charles Walker, \emph{Distributive Laws via Admissibility}, \href{https://arxiv.org/abs/1706.09575}{arXiv} \end{itemize} The relation to Yoneda structures is due to \begin{itemize}% \item Charles Walker, \emph{Yoneda Structures and KZ Doctrines}, \href{https://arxiv.org/abs/1703.08693}{arxiv} \end{itemize} The logical-syntactical side is examined in \begin{itemize}% \item [[Jiri Adamek]], Lurdes Sousa, \emph{KZ-monadic categories and their logic}, \href{http://tac.mta.ca/tac/volumes/32/10/32-10abs.html}{tac} \end{itemize} [[!redirects KZ monad]] [[!redirects KZ-monad]] [[!redirects KZ doctrine]] [[!redirects KZ-doctrine]] [[!redirects KZ monads]] [[!redirects KZ-monads]] [[!redirects KZ doctrines]] [[!redirects KZ-doctrines]] [[!redirects lax-idempotent 2-monad]] [[!redirects lax-idempotent 2-monads]] [[!redirects lax-idempotent monad]] [[!redirects lax-idempotent monads]] [[!redirects colax-idempotent 2-monad]] [[!redirects colax-idempotent 2-monads]] [[!redirects colax-idempotent monad]] [[!redirects colax-idempotent monads]] [[!redirects lax-idempotent]] [[!redirects lax-idempotence]] [[!redirects colax-idempotent]] [[!redirects colax-idempotence]] [[!redirects lax idempotent 2-monad]] [[!redirects lax idempotent 2-monads]] [[!redirects lax idempotent monad]] [[!redirects lax idempotent monads]] [[!redirects colax idempotent 2-monad]] [[!redirects colax idempotent 2-monads]] [[!redirects colax idempotent monad]] [[!redirects colax idempotent monads]] [[!redirects lax idempotent]] [[!redirects lax idempotence]] [[!redirects colax idempotent]] [[!redirects colax idempotence]] \end{document}