\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{length of an object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{additive_and_abelian_categories}{}\paragraph*{{Additive and abelian categories}}\label{additive_and_abelian_categories} [[!include additive and abelian categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToSchurFunctors}{Relation to Schur functors}\dotfill \pageref*{RelationToSchurFunctors} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{length} of an [[object]] in an [[abelian category]] $\mathcal{C}$ is akin to the concept of [[dimension]] of [[vector spaces]], to which it reduces in the case that $\mathcal{C} =$ [[Vect]]. The 1-dimensional vector space is a [[simple object]] in [[Vect]], and the [[dimension]] of a vector space $V$, if it is finite, may be thought of as the number of times that one may split off such a simple object from $V$. The definition of \emph{length} generalizes this concept, notably to [[modules]] over some [[ring]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{C}$ be an [[abelian category]]. \begin{defn} \label{FiniteLength}\hypertarget{FiniteLength}{} Given an [[object]] $X \in \mathcal{C}$, then a \emph{Jordan-H\"o{}lder sequence} or \emph{[[composition series]]} for $X$ is a finite [[filtration]], i.e. a finite sequence of [[subobject]] inclusions into $X$, starting with the [[zero objects]] \begin{displaymath} 0 = X_0 \hookrightarrow X_1 \hookrightarrow \cdots \hookrightarrow X_{n-1} \hookrightarrow X_n = X \end{displaymath} such that at each stage $i$ the [[quotient]] $X_i/X_{i-1}$ (i.e. the [[coimage]] of the [[monomorphism]] $X_{i-1} \hookrightarrow X_i$) is a [[simple object]] of $\mathcal{C}$. If a Jordan-H\"o{}lder sequence for $X$ exists at all, then $X$ is said to be of \emph{finite length}. \end{defn} (e.g. \hyperlink{EGNO15}{EGNO 15, def. 1.5.3}) \begin{prop} \label{JordanHolderSequenceHasDefiniteLength}\hypertarget{JordanHolderSequenceHasDefiniteLength}{} \textbf{([[Jordan-Hölder theorem]])} If $X \in \mathcal{C}$ has finite length according to def. \ref{FiniteLength}, then in fact all Jordan-H\"o{}lder sequences for $X$ have the same length $n \in \mathbb{N}$. \end{prop} (e.g. \hyperlink{EGNO15}{EGNO 15, theorem 1.5.4}) \begin{defn} \label{LengthOfAnObject}\hypertarget{LengthOfAnObject}{} If an object $X \in \mathcal{C}$ has finite length according to def. \ref{FiniteLength}, then the length $n \in \mathbb{N}$ of any of its Jordan-H\"o{}lder sequences, which is uniquely defined according to prop. \ref{JordanHolderSequenceHasDefiniteLength}, is called the \emph{length of the object} $X$. \end{defn} (e.g. \hyperlink{EGNO15}{EGNO 15, def. 1.5.5}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToSchurFunctors}{}\subsubsection*{{Relation to Schur functors}}\label{RelationToSchurFunctors} In [[abelian categories]] that are also $k$-linear [[tensor categories]] over a [[field]] $k$ of [[characteristic zero]], then objects have finite length precisely if they are annihilated by some [[Schur functor]] for the [[symmetric group]]. This is a (considerable) generalization of the familiar fact that for every [[finite dimensional vector space]] $V$ there exists an [[symmetric algebra|exterior power]] that vanishes, $\wedge^n V = 0$ (namely for all $n \gt dim(V)$). Similarly, if $V$ is a [[super vector space]] of dimension $(d,p)$, then the combined $(d+1)$st skew-symmetric tensor power and $(p+1)$st symmetric tensor power annihilates it. In this way prop. \ref{LenghtOfObjectIsBounded} below goes in the direction of establishing that in a $k$-linear tensor category all objects of bounded length , in the sense of def. \ref{LenghtOfObjectIsBounded}, behave like having underlying [[super vector spaces]]. The completion of this statement is [[Deligne's theorem on tensor categories]], see there for more. First we need to fix the precise meaning of ``[[tensor category]]'': \begin{defn} \label{TensorCategory}\hypertarget{TensorCategory}{} For $k$ an [[algebraically closed field]] of [[characteristic zero]], then a \emph{$k$-[[tensor category]]} $\mathcal{A}$ is an \begin{enumerate}% \item [[abelian category|abelian]] \item [[rigid monoidal category|rigid]] \item [[symmetric monoidal category|symmetric]] \item [[braided monoidal category|braided]] \item [[monoidal category]] \item [[enriched category|enriched]] over $k$[[Mod]] = $k$[[Vect]] (i.e. $k$-linear), \end{enumerate} such that \begin{enumerate}% \item the [[tensor product]] functor $\otimes \colon \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ is \begin{enumerate}% \item $k Mod$-[[enriched functor|enriched]] (i.e. $k$-linear); \item [[exact functor|exact]] \end{enumerate} in both arguments; \item $End(1) \simeq k$ (the [[endomorphism ring]] of the [[tensor unit]] coincides with $k$). \end{enumerate} Such a $k$-tensor category is called \emph{finitely $\otimes$-generated} if there exists an [[object]] $E \in \mathcal{A}$ such that every other object $X \in \mathcal{A}$ is a [[subquotient]] of a [[direct sum]] of [[tensor products]] $E^{\otimes^n}$, for some $n \in \mathbb{N}$: \begin{displaymath} \itexarray{ && \underset{i}{\oplus} E^{\otimes^{n_i}} \\ && \downarrow \\ X &\hookrightarrow& (\underset{i}{\oplus} E^{\otimes^{n_i}})/Q } \,. \end{displaymath} Such $E$ is called an \emph{$\otimes$-generator} for $\mathcal{A}$. \end{defn} (\hyperlink{Deligne02}{Deligne 02, 0.1}) \begin{defn} \label{SubexponentialGrowth}\hypertarget{SubexponentialGrowth}{} A [[tensor category]] $\mathcal{A}$ (def. \ref{TensorCategory}) is said to have \emph{subexponential growth} if for every [[object]] $X$ there exists a [[natural number]] $N$ such that $X$ is of length (def. \ref{LengthOfAnObject}) at most $N$, and that also all [[tensor product]] powers of $X$ are of length bounded by the corresponding powers of $N$: \begin{displaymath} \underset{X \in \mathcal{A}}{\forall} \underset{N \in \mathbb{N}}{\exists} \underset{n \in \mathbb{N}}{\forall} \; length(N^{\otimes^n}) \leq N^n \,. \end{displaymath} \end{defn} (e.g. \hyperlink{EGNO15}{EGNO 15, def. 9.11.1}) \begin{defn} \label{SchurFunctor}\hypertarget{SchurFunctor}{} For $(\mathcal{A},\otimes)$ a $k$-[[tensor category]] as in def.\ref{TensorCategory}, for $X \in \mathcal{A}$ an [[object]], for $n \in \mathbb{N}$ and $\lambda$ a [[partition]] of $n$, say that the value of the [[Schur functor]] $S_\lambda$ on $X$ is \begin{displaymath} S_{\lambda}(X) \coloneqq (V_\lambda \otimes X^{\otimes_n})^{S_n} \coloneqq \left( \frac{1}{n!} \underset{g\in S_n}{\sum} \rho(g) \right) \left( V_\lambda \otimes X^{\otimes_n} \right) \end{displaymath} where \begin{itemize}% \item $S_n$ is the [[symmetric group]] on $n$ elements; \item $V_\lambda$ is the [[irreducible representation]] of $S_n$ corresponding to $\lambda$; \item $\rho$ is the diagional [[action]] of $S_n$ on $V_\lambda \otimes X^{\otimes_n}$, coming from the canonical [[permutation]] action on $X^{\otimes_n}$; \item $(-)^{S_n}$ denotes the subspace of [[invariants]] under the action $\rho$ \item the last expression just rewrites this as a [[group averaging]]. \end{itemize} \end{defn} (\hyperlink{Deligne02}{Deligne 02, 1.4}) \begin{prop} \label{LenghtOfObjectIsBounded}\hypertarget{LenghtOfObjectIsBounded}{} For a [[tensor category]] $\mathcal{A}$ the following are equivalent: \begin{enumerate}% \item the category has subexponential growth (def. \ref{SubexponentialGrowth}). \item For every object $X \in \mathcal{A}$ there exists $n \in \mathbb{N}$ and a [[partition]] $\lambda$ of $n$ such that the corresponding value of the [[Schur functor]], def. \ref{SchurFunctor}, on $X$ vanishes: $S_\lambda(X) = 0$. \end{enumerate} \end{prop} (\hyperlink{Deligne02}{Deligne 02, prop. 05}) \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Pavel Etingof]], Shlomo Gelaki, Dmitri Nikshych, [[Victor Ostrik]], section 1.5 in \emph{Tensor categories}, Mathematical Surveys and Monographs, Volume 205, American Mathematical Society, 2015 (\href{http://www-math.mit.edu/~etingof/egnobookfinal.pdf }{pdf}) \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Composition_series}{Composition series}} \end{itemize} The relation to [[Schur functors]] is discussed in \begin{itemize}% \item [[Pierre Deligne]], \emph{Cat\'e{}gorie Tensorielle}, Moscow Math. Journal 2 (2002) no. 2, 227-248. (\href{https://www.math.ias.edu/files/deligne/Tensorielles.pdf}{pdf}) \end{itemize} For more on this see at \emph{[[Deligne's theorem on tensor categories]]}. [[!redirects lengths of objects]] [[!redirects Jordan-Hölder series]] [[!redirects Jordan-Holder series]] [[!redirects Jordan-Hölder sequence]] [[!redirects Jordan-Holder sequence]] [[!redirects object of finite length]] [[!redirects objects of finite length]] \end{document}