\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{level structure on an elliptic curve} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{congruence_subgroups}{Congruence subgroups}\dotfill \pageref*{congruence_subgroups} \linebreak \noindent\hyperlink{over_general_rings}{Over general rings}\dotfill \pageref*{over_general_rings} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToSpinStructures}{Relation to spin structures on elliptic curves}\dotfill \pageref*{RelationToSpinStructures} \linebreak \noindent\hyperlink{properties_2}{Properties}\dotfill \pageref*{properties_2} \linebreak \noindent\hyperlink{topological_modular_forms_with_level_structure}{Topological modular forms with level structure}\dotfill \pageref*{topological_modular_forms_with_level_structure} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{over_the_complex_numbers}{Over the complex numbers}\dotfill \pageref*{over_the_complex_numbers} \linebreak \noindent\hyperlink{over_general_base_rings}{Over general base rings}\dotfill \pageref*{over_general_base_rings} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Over the [[complex numbers]] an [[elliptic curve]] (hence a [[complex manifold|complex]] [[torus]]) may be, and often is, presented as a [[quotient]] of the [[complex plane]] by a framed [[lattice]], determined by a point $\tau$ in the [[upper half plane]] $\mathfrak{h}$. But indeed this data determines a [[framed elliptic curve]], namely the underlying [[curve]] $\Sigma$ together with the ``edges along which it is glued'' by this construction. These are equivalently a choice of [[ordering|ordered]] [[basis]] \begin{displaymath} (a_1,a_2)\in H_1(\Sigma,\mathbb{Z}) \end{displaymath} of the first [[ordinary homology]] of $\Sigma$ with [[integer]] [[coefficients]] (and vanishing [[intersection number]]). The [[special linear group]] $SL_2(\mathbb{Z})$ naturally acts on this data (by [[Möbius transformations]] on $\tau$) and the [[quotient]] [[projection]] exhibits an infinite [[covering]] ([[atlas]]) of the [[moduli stack of elliptic curves]] over the complex numbers \begin{displaymath} \mathfrak{h} \longrightarrow \mathfrak{h}//SL_2(\mathbb{C}) \simeq \mathcal{M}_{ell}(\mathbb{C}) \,. \end{displaymath} The concept of \emph{level structure} on an elliptic curve is a structure weaker than that of a [[framed elliptic curve|framing]] which analogously gives a [[finite number|finite]] [[covering]]. Instead of considering cycles in integral homology, a \emph{level $n$-structure} for [[natural number]] $B$ is given by cycles in homology with [[coefficients]] just in the [[cyclic group]] $\mathbb{Z}/n\mathbb{Z}$ (e.g. \hyperlink{Hain08}{Hain 08, def. 4.6}). On such level-$n$ data now acts instead just the group $SL_2(\mathbb{Z}/n\mathbb{Z})$. The [[kernel]] of the [[projection]] maps is called the \emph{level $n$-subgroup} (an example of a \emph{[[congruence subgroup]]}) \begin{displaymath} \Gamma(n) \to SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z}) \,. \end{displaymath} There is then a [[moduli space]] of complex elliptic curves equipped with level $n$-structure \begin{displaymath} \mathcal{M}_{ell}(\mathbb{C})[n] \simeq \mathfrak{h}//\Gamma_n \end{displaymath} called the \emph{[[modular curve]]}, and this is now a finite cover (of rank the [[order of a group|order]] of the [[finite group]] $SL_2(\mathbb{Z}/n\mathbb{Z})$) of the actual [[moduli stack of elliptic curves|moduli stack of complex elliptic curves]] \begin{displaymath} \mathcal{M}_{ell}[n](\mathbb{C}) \longrightarrow \mathcal{M}_{ell}[n](\mathbb{C})//SL_2(\mathbb{Z}/n\mathbb{Z}) \simeq \mathcal{M}_{ell}(\mathbb{C}) \,. \end{displaymath} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{congruence_subgroups}{}\subsubsection*{{Congruence subgroups}}\label{congruence_subgroups} Let $n \in \mathbb{N}$ be a [[natural number]]. Write \begin{displaymath} p_n \;\colon\; SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/\mathbb{Z}_n) \end{displaymath} for the projection from the [[special linear group]] induced by the [[quotient]] [[projection]] $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ to the [[cyclic group]]. The [[congruence subgroups]] of the [[special linear group]] $SL_2(\mathbb{Z})$ (essentially the [[modular group]]) are defined as follows. The \textbf{principal congruence subgroup} is \begin{displaymath} \Gamma(n) \coloneqq ker(p_n) = p_n^{-1}\left(\left\{\itexarray{ 1 & 0 \\ 0 & 1}\right\}\right) \end{displaymath} The other two are \begin{displaymath} \Gamma_0(n) \coloneqq p_n^{-1}\left(\left\{\itexarray{ \ast & \ast \\ 0 & \ast}\right\}\right) \end{displaymath} \begin{displaymath} \Gamma_1(n) \coloneqq p_n^{-1}\left(\left\{\itexarray{ 1 & \ast \\ 0 & \ast}\right\}\right) \end{displaymath} \hypertarget{over_general_rings}{}\subsubsection*{{Over general rings}}\label{over_general_rings} (e.g \hyperlink{Voloch}{Voloch, def. 1.1} \hyperlink{Ando00}{Ando 00, section 1.4}, \hyperlink{AndoHopkinsStrickland02}{Ando-Hopkins-Strickland 02, section 15.2}, \hyperlink{HillLawson13}{Hill-Lawson 13, section 3.6}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToSpinStructures}{}\subsubsection*{{Relation to spin structures on elliptic curves}}\label{RelationToSpinStructures} For [[elliptic curves]] over the [[complex numbers]] ([[complex manifold|complex]] oriented pointed [[tori]]) the congruence subgroup $\Gamma_0(2)$ has the interpretation as being precisely the subgroup of the [[modular group]] which preserves one of the ``NS-R'' [[spin structures]]. In detail, the elliptic curve $\Sigma$, being [[framed manifold|framed]] has a canonical [[spin structure]] given by the trivial [[double cover]]. The space of all spin structures is a [[torsor]] over $H^1(\Sigma, \mathbb{Z}/2\mathbb{Z}) \simeq [\pi_1(\sigma), \mathbb{Z}/2\mathbb{Z}] \simeq [\mathbb{Z} \times \mathbb{Z}, \mathbb{Z}/2\mathbb{Z}] \simeq (\mathbb{Z}/2\mathbb{Z})^2$. In terms of this action the canonical one is labeled $(0,0)$ and then there are three more, labeled $(1,0)$, $(0,1)$ and $(1,1)$. The [[modular group]] acts on these via the quotient map $p_2 \;\colon\; SL_2(\mathbb{Z}) \to SL_{2}(\mathbb{Z}/2\mathbb{Z})$. Hence it preserves $(0,0)$ and mixes the other three spin structures. Precisely $\Gamma_0(2)$ preserves $(1,0)$ (and an isomorphic subgroup of course preserves $(0,1)$). The principal congruence subgroup $\Gamma(2)$ is the one which preserves all four spin structures jointly. In terms of [[type II string theory]] the spin structure $(1,0)$ is called the ``NS-R boundary condition'' for the spinors. The [[partition function]] of the [[type II superstring]] ``in the NS-R sector'' is therefore (at best, indeed it is, being the universal [[Ochanine elliptic genus]]) a [[modular form]] not for the full [[modular group]], but for $\Gamma_0(2)$ (\href{Witten87a}{Witten 87a, below (13)}). For more on this see at \emph{\href{Witten+genus#ModularityForTypeIISuperstring}{Witten genus -- Modularity -- For the type II string}}. The homotopy-theoretic refinement of this involves [[tmf0(2)]], see at \emph{[[spin orientation of Ochanine elliptic cohomology]]}. \hypertarget{properties_2}{}\subsection*{{Properties}}\label{properties_2} \hypertarget{topological_modular_forms_with_level_structure}{}\subsubsection*{{Topological modular forms with level structure}}\label{topological_modular_forms_with_level_structure} The construction of [[topological modular forms]] ([[tmf]]) may be generalized to curves with level structure (\hyperlink{MahowaldRezk09}{Mahowald-Rezk 09}). A systematic kind of ``[[modular equivariant elliptic cohomology]]'' in this sense is discussed in (\hyperlink{HillLawson13}{Hill-Lawson 13}). \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{over_the_complex_numbers}{}\subsubsection*{{Over the complex numbers}}\label{over_the_complex_numbers} The principal congruence subgroups are discussed for instance in \begin{itemize}% \item Richard Hain, section 4.2 of \emph{Lectures on Moduli Spaces of Elliptic Curves} (\href{http://arxiv.org/abs/0812.1803}{arXiv:0812.1803}) \end{itemize} The relation of $\Gamma_1(2)$ to [[spin structures]] is discussed for instance in \begin{itemize}% \item [[Daniel Freed]], pages 24-25 of \emph{On determinant line bundles}, 1987 (\href{http://www.ma.utexas.edu/users/dafr/detsur.pdf}{pdf}) \item [[Edward Witten]], \emph{Elliptic Genera And Quantum Field Theory} , Commun.Math.Phys. 109 525 (1987) (\href{http://projecteuclid.org/euclid.cmp/1104117076}{Euclid}) \end{itemize} \hypertarget{over_general_base_rings}{}\subsubsection*{{Over general base rings}}\label{over_general_base_rings} The concept of level structure on an elliptic curve is due to \begin{itemize}% \item Nicholas M. Katz, [[Barry Mazur]], \emph{Arithmetic moduli of elliptic curves}, Princeton University Press, Princeton, NJ, 1985 \end{itemize} Review of the definition includes \begin{itemize}% \item [[Felipe Voloch]], \emph{Modular curves -- 1. Level structures} (\href{https://www.ma.utexas.edu/users/voloch/Ellnotes/feb23.pdf }{pdf}) \end{itemize} General discussion is in \begin{itemize}% \item [[Aaron Greicius]], \emph{Elliptic curves with surjective adelic Galois representations} (\href{http://arxiv.org/abs/0901.2513}{arXiv:0901.2513}) \item David Zywina, \emph{Elliptic curves with maximal Galois action on their torsion points} (\href{http://arxiv.org/abs/0809.3482}{arXiv:0809.3482}) \end{itemize} Discussion of the corresponding [[moduli stack]] and its [[tmf]]$(n)$-spectrum is in \begin{itemize}% \item [[Matthew Ando]], section 1.4 of \emph{Power operations in elliptic cohomology and representations of loop groups} Transactions of the American Mathematical Society 352, 2000, pp. 5619-5666. (\href{http://www.jstor.org/stable/221905}{JSTOR}, \href{http://www.math.uiuc.edu/~mando/papers/POECLG/poeclg.pdf}{pdf}) \item [[Matthew Ando]], [[Michael Hopkins]], [[Neil Strickland]], part 3 of \emph{The sigma orientation is an H-infinity map}. American Journal of Mathematics Vol. 126, No. 2 (Apr., 2004), pp. 247-334 (\href{http://arxiv.org/abs/math/0204053}{arXiv:math/0204053}) \item [[Mark Mahowald]] [[Charles Rezk]], \emph{Topological modular forms of level 3}, Pure Appl. Math. Quar. 5 (2009) 853-872 (\href{http://www.math.uiuc.edu/~rezk/tmf3-paper-final.pdf}{pdf}) \item [[Michael Hill]], [[Tyler Lawson]], \emph{Topological modular forms with level structure} (\href{http://arxiv.org/abs/1312.7394}{arXiv:1312.7394}) \end{itemize} Specifically Level-2 structure in this context is discussed in \begin{itemize}% \item [[Vesna Stojanoska]], \emph{Duality for Topological Modular Forms} (\href{http://arxiv.org/abs/1105.3968}{arXiv:1105.3968}) \item [[Mark Behrens]], section 1.3 of \emph{A modular description of the K(2)-local sphere at the prime 3} (\href{http://arxiv.org/abs/math/0507184}{arXiv:math/0507184}) \end{itemize} [[!redirects level structures on an elliptic curve]] [[!redirects level structures on elliptic curves]] [[!redirects level N-structure]] [[!redirects level N structure]] [[!redirects level N-structures]] [[!redirects level N structures]] [[!redirects level-n structure]] [[!redirects level-n structures]] [[!redirects level-n structure]] [[!redirects level-n structures]] [[!redirects level n-structure]] [[!redirects level n structure]] [[!redirects level n-structures]] [[!redirects level n structures]] [[!redirects level n subgroup]] [[!redirects level n subgroups]] [[!redirects level n-structure on an elliptic curve]] [[!redirects level n-structure on elliptic curves]] [[!redirects elliptic curve with level-n structure]] [[!redirects elliptic curves with level-n structure]] [[!redirects elliptic curve with level structure]] [[!redirects elliptic curve with level structures]] [[!redirects elliptic curves with level structure]] [[!redirects elliptic curves with level structures]] \end{document}